Financial networks and contagion: learning from ecology and epidemiology

Sujit Kapadia
Bank of England

ESRC-Oxford Martin School
International Scientific Symposium on Macroeconomics
Oxford, 2 October 2012

These slides and the associated talk represent the views of the speaker and should not be thought to represent those of the Bank of England or Financial Policy Committee members.
Overview

• Areas of focus:
 – the causes and dynamics of the global financial crisis
 – appropriate policy responses in the aftermath of the crisis

• What can we learn from ecological and epidemiological examples and techniques?

• Outline
 – Stylised facts
 – Lessons from epidemiology and ecology
 – Applying techniques to modelling contagion in financial system
 – Examples: theory / simulations & quantitative / empirical
 – Policy conclusions
Complexity and Concentration in the Network

Network of large exposures\(^{(a)}\) between UK banks\(^{(b)(c)}\)

Source: FSA regulatory returns.

(a) A large exposure is one that exceeds 10% of a lending bank’s eligible capital during a period. Eligible capital is defined as Tier 1 plus Tier 2 capital, minus regulatory deductions.

(b) Each node represents a bank in the United Kingdom. The size of each node is scaled in proportion to the sum of (1) the total value of exposures to a bank, and (2) the total value of exposures of the bank to others in the network. The thickness of a line is proportionate to the value of a single bilateral exposure.

(c) Based on 2006 Q4 data.
Profile of Intra-financial System Activity

Sectoral breakdown of UK debt, proportion of GDP

Repos & financial market open paper as a % of retail deposits in the US

- Financial corporate debt
- Government debt
- Non-financial corporate debt
- Household debt

Primary dealer repos and financial open market paper
Net repos and financial open market paper

Per cent
Homogeneity

Weighted-average Cumulative Total Returns

Source: Bloomberg, CreditSuisse/Tremont and Bank calculations.
(a) Sample based on banks and insurers in S&P 500, FTSE All Share and DJ EuroSTOXX indices as at March 2009. Excludes firms for which returns not quoted over entire sample period.
Broad Lessons from Ecology (1)

- Complex, concentrated, increasingly homogenous financial system

- Pre-crisis market participant (and economist?) view
 - inevitable by-product of technical progress in finance; completion of markets; improvements in risk management
 - good for stability

- ‘Ecologist’ view
 - Complexity plus homogeneity = fragility
 - Simple and / or modular systems robust: savannas and grasslands (cf tropical rainforests); firebreaks in forests
 - Diversity key: resilience of fisheries, crops to disease, and savannas / grasslands to drought
Broad Lessons from Ecology (2)

• Pre-crisis financial regulation
 – static: no time variation
 – individual institution perspective: no attention paid to potential systemic consequences of failure
Size and Pre-Crisis Capital Adequacy

End-2007 Global Banks’ Size and Capital Ratios

End-2007 Global Banks’ Size and Leverage Ratios
Broad Lessons from Ecology (2)

• Pre-crisis regulation
 – static: no time variation
 – individual institution perspective: no attention paid to potential systemic consequences of failure

• ‘Ecologist’ view
 – System-wide approach to management necessary (eg fishing quotas)
Epidemiology: ‘Tipping Points’ and ‘Super-spreaders’

• When will a disease spread through a population?

• Suppose everyone spreads the disease to 1 in 10 of their friends:
 – If everyone has exactly 9 friends, the disease will die out
 – But if everyone has exactly 11 friends, it will go viral
Epidemiology: ‘Tipping Points’ and ‘Super-spreaders’

• In reality, some are better connected than others.
 – People with more friends spread the disease more widely.
 – But they are also more likely to catch it in the first place, since they have many friends to catch it from.

• So connectivity enters twice. A person with 10 friends is $10 \times 10 = 100$ times important in spreading the disease than someone with 1 friend.

• Highly connected ‘super-spreaders’ are key to the propagation of contagion.

• Policy response: target super-spreaders (eg vaccines, education programmes)
Epidemiology: Behavioural Responses

• ‘Flight’ or ‘Hide’
 – Memphis yellow fever outbreak, 1878
 – SARS and self-quarantining
Why Complex Networks for Finance?

• Examples highlight usefulness of approach:
 – Contagion
 – Nonlinearities (big effects from small shocks)
 – Seemingly Identical Shocks \Rightarrow Different Outcomes
 – Heterogeneity – role of key players (fat tails)
 – Dynamics and Path Dependence
 – Behavioural Feedbacks and Amplifiers

• All key dimensions of systemic risk
Epidemiology and Finance

• Financial systems have particular features:
 – Balance sheets (more complex nodes)
 – Links which are directed and weighted
 – Possibility for risk sharing
 – Local dependence

• Behavioural responses key
 – But may be analogies to ‘hide’ and ‘flight’
Models with Complex Financial Networks

- Overview: Haldane and May (Nature, 2011)

- Default contagion – simulations: Nier et al (JEDC, 2007)

- Liquidity hoarding with richer behaviour, confidence effects, fire sales, default contagion, and differential bank sizes – simulations: Arinaminpathy, Kapadia and May (PNAS, forthcoming)
Network Structure

• Network has n financial intermediaries (‘banks’)

• Each bank is a node; unsecured interbank assets and liabilities define links (directed)

• Average number of links that point into nodes = average number of links that point out. Denote this *average degree*, z.

• Joint degree distribution is arbitrary
The Balance Sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^F</td>
<td>D</td>
</tr>
<tr>
<td>A^C</td>
<td></td>
</tr>
<tr>
<td>A^{RR}</td>
<td>L^R</td>
</tr>
<tr>
<td>A^{IB}</td>
<td>L^{IB}</td>
</tr>
<tr>
<td>A^L</td>
<td>K</td>
</tr>
</tbody>
</table>
Contagion (1)

Default contagion and asset fire sales – theory and simulations: Gai and Kapadia (2010); May and Arinaminpathy (2010)
Contagion (1)

Default contagion and asset fire sales – theory and simulations: Gai and Kapadia (2010); May and Arinaminpathy (2010)
Contagion (2)

Liquidity hoarding and repo activity – theory and simulations: Gai, Haldane and Kapadia (JME, 2011)
Example from Gai et al (2011)

Concentrated Network: Random v Targeted Shock
Example from Gai et al (2011)

Microprudential and Systemic Liquidity Requirements

- Targeting liquidity dominates. And may also have a positive incentive effect.
Example from Gai et al (2011)

Time-Varying Liquidity Requirements
Example from Gai et al (2011)

Time-Varying Liquidity Requirements

- Links to broader time-varying macroprudential policy
- Intra-financial system lending key (not just real economy)
Further Behavioural Responses (1)

Liquidity hoarding with richer behaviour and confidence effects: Arinaminpathy, Kapadia and May (PNAS, forthcoming)

• **Individual bank health**: \(h_i = c_i m_i \)
 where \(c_i \) is bank capital as a proportion of its initial level, and:

\[
m_i = \min \left[1, \frac{A_i^{ST} + l_i}{L_i^{ST}} \right]
\]

• **System confidence**: \(C = EA \)

 \(E \) – proportion of interbank loans not withdrawn
 \(A \) – total value of all remaining assets in the system (at current market price) as a proportion of its initial level
Further Behavioural Responses (2)

- Banks shorten the maturity of their long-term IB loans if:
 \[h_i h_j < (1 - C) \]
- This improves their own health at the expense of the system
Further Behavioural Responses (2)

- Banks shorten the maturity of their long-term IB loans if:

\[h_i \cdot h_j < (1 - C) \]

- This improves their own health at the expense of the system

- Banks withdraw loans altogether if either:

\[h_i \cdot h_j < (1 - C)^2 \]

or if they are forced to because they do not have sufficient liquid assets to meet funding withdrawals by other banks
Example from Arinaminpathy et al (2012)

- Model also integrates asset fire sales, default contagion and differential bank sizes
Example from Arinaminpathy *et al* (2012)

Bank size, capital ratios and failure
Macroprudential Policy Implications

• Capital and liquidity surcharges for SIFIs
 – aim to make key nodes more resilient
 – and incentivise banks to become less systemically important

• Time-varying policies to mitigate effects of the cycle
 – risk weights on intra-financial system exposures;
 – time-varying liquidity requirements;
 – adjusting haircuts on secured financing
Broader Policy Implications

• Better Data and Greater Transparency
 – cf real-time management and mapping of SARS

• Netting and Central Clearing
 – simplicity and modularity

• System Structure (eg ICB ring-fencing, Volcker rule, living wills)
 – diversity and modularity
Quantitative Models with Complex Financial Networks

- Quantitative systemic risk / stress testing models with networks and systemic feedbacks:
 - OeNB SRM model (2006); BoE RAMSI model (Aikman et al, 2009, BoE WP 372; Kapadia et al, 2012, BoE WP 456)

- Calibrated network models (link to agent-based modelling):
RAMSI

Macroeconomic and financial shocks

Credit, market and income risk

Individual Banks’ P&L
Feedbacks in RAMSI

- **Shock**
 - Funding problems at one or more banks
 - Confidence effects

- **Confidence effects**
 - Failure of a bank
 - Counterparty credit risk (Network)
 - Funding problems at other banks

- **Failure of a bank**
 - Reduction in Interbank Lending (Liquidity Hoarding)

- **Reduction in Interbank Lending (Liquidity Hoarding)**
 - Asset fire sales

Feedback arrows:
1. Shock → Funding problems at one or more banks
2. Funding problems at one or more banks → Failure of a bank
3. Failure of a bank → Reduction in Interbank Lending (Liquidity Hoarding)
4. Counterparty credit risk (Network) → Funding problems at other banks
5. Reduction in Interbank Lending (Liquidity Hoarding) → Asset fire sales
Example from RAMSI

Total System Assets, Q12: With and Without Liquidity Risk, Network Effects and Feedbacks

- **Core**: 17 UK banks; **Middle**: 120 foreign banks; **Periphery**: 50,000 firms.
- Use FSA and BIS data to calibrate the distributions of interbank loan sizes.
 - distributions look fat-tailed, so use log-normal distribution
- Use Bankscope data to ascertain general structure of the balance sheets
Concluding Comments

• Network approaches drawing on epidemiology and ecology can parsimoniously capture key features of financial systems and contagion.
 – Important insights and policy conclusions often not evident in standard economic models

• Key challenges / areas for future work:
 – Introducing a stronger / more developed role for behavioural considerations (eg for the formation of links)
 – Stronger role for uncertainty
 – Endogenous shocks
 – Greater empiricism
 – Integration into agent-based models
 – Role of diversity and modularity?