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Abstract

As jurisdictions around the world take their first steps toward regulating the most
powerful AI systems, such as the EU AI Act and the US Executive Order 14110,
there is a growing need for effective enforcement mechanisms that can verify
compliance and respond to violations. We argue that compute providers should
have legal obligations and ethical responsibilities associated with AI development
and deployment, both to provide secure infrastructure and to serve as intermediaries
for AI regulation. Compute providers can play an essential role in a regulatory
ecosystem via four key capacities: as securers, safeguarding AI systems and
critical infrastructure; as record keepers, enhancing visibility for policymakers;
as verifiers of customer activities, ensuring oversight; and as enforcers, taking
actions against rule violations. We analyze the technical feasibility of performing
these functions in a targeted and privacy-conscious manner and present a range of
technical instruments. In particular, we describe how non-confidential information,
to which compute providers largely already have access, can provide two key
governance-relevant properties of a computational workload: its type—e.g., large-
scale training or inference—and the amount of compute it has consumed. Using
AI Executive Order 14110 as a case study, we outline how the US is beginning to
implement record keeping requirements for compute providers. We also explore
how verification and enforcement roles could be added to establish a comprehensive
AI compute oversight scheme. We argue that internationalization will be key
to effective implementation, and highlight the critical challenge of balancing
confidentiality and privacy with risk mitigation as the role of compute providers in
AI regulation expands.
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Executive Summary

Introduction — Jurisdictions around the world are taking their first steps toward regulating AI, such
as the EU AI Act and the US Executive Order 14110. While these regulatory efforts mark significant
progress, they lack robust mechanisms to verify compliance and respond to violations. We propose
compute service providers (compute providers below) as an important node for AI safety, both in
providing secure infrastructure and acting in an intermediary role for AI regulation, leveraging their
unique relationships with AI developers and deployers. Our proposal is not intended to replace
existing regulations on AI developers but rather to complement them. (Section 1)

Compute Providers’ Intermediary Role — Increasingly large amounts of computing power are nec-
essary for both the development and deployment of the most sophisticated AI systems. Consequently,
advanced AI models today are trained, and deployed in data centers, housing tens of thousands of
“AI accelerators” (specialized computers for AI applications). Because of the large upfront cost of
building this infrastructure and economies of scale, AI developers often access large-scale compute
through models like Infrastructure as a Service (IaaS), also often described as cloud computing.
(Section 1.1)
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Figure 1: The intermediary role of compute providers in relation to AI companies and regulators.

Some leading AI firms currently manage their own data centers or maintain exclusive partnerships
with leading entities in this domain, known as hyperscalers. Notably, the most advanced AI research
is currently being conducted at or with these hyperscalers (e.g., Microsoft Azure, Amazon Web
Services (AWS), Apple, Bytedance, Meta, Oracle, Tencent, and Google Cloud). While this situation
presents complex challenges for regulatory oversight, our discussion also encompasses scenarios in
which compute providers are internal to or closely linked with an AI firm.

We focus on frontier AI systems, which have the potential to give rise to dangerous capabilities and
pose serious risks. As these systems necessitate extensive amounts of compute to train and deploy at
large scales, targeting compute providers becomes a promising method to oversee the development
and deployment of such systems. Furthermore, this target narrows the regulatory scope to the smaller
set of key customers who are building AI systems at the frontier, thereby minimizing the burdens
associated with regulatory compliance and enforcement. (Section 1.2)

Governance Capacities — We propose that compute providers can leverage their crucial role in the
AI supply chain to secure infrastructure and serve as the intermediate node in support of regulatory
objectives while maintaining customers’ privacy and rights. They can facilitate effective AI regulation
via four key capacities: as securers, record keepers, verifiers, and, in some cases, even enforcers.
Reporting represents a related yet distinct dimension, wherein compute providers provide information
to authorities as mandated by law or regulations. (Section 2)

3



Governance Capacities

Security Record Keeping Verification Enforcement

Helping provide physical
and cybersecurity measures

to secure the AI model,
related intellectual

property, and personal and
confidential data.

The selective collection,
organization, and

maintenance of high-level
information of a compute
provider’s infrastructure

usage, such as a customer’s
compute usage data.1

Actively verifying customer
identities, specific activities,
and high-level AI systems’

properties.

Restriction or limitation of
compute access to

customers or workloads for
non-compliant customers.

Enables

Enables shared security
standards to protect the

public good, such as
safeguarding critical

infrastructure and helping
prevent model theft.

Increases visibility into AI
development, links

customers and their usage
to real-world actors, and

enables post-incident
attributions and forensics.

Ensures that the
deployment and

development of AI systems
adhere to regulations or
company policies and
reported properties.

Directly impacts the
capability of customers to

develop or deploy
advanced AI systems,
ensuring adherence to

rules.

Examples

Help prevent IP (e.g.,
algorithms), model weights,

and training data from
being stolen by malicious

actors.

Help prevent attacks on
large-scale deployments of
foundational models that

could shut down dozens of
critical services

nationwide.

Obtain insights into
national compute use

trends for policy
formulation, such as

compute distribution (e.g.,
US NAIRR).

Enable monitoring for
suspected violations of the

reporting requirements
under Executive Order

14110.

Collect information on the
environmental impact of AI

compute use.

Confirm compliance with
mandatory reporting over

training compute
thresholds.

Verify compliance with
data usage guidelines for

frontier AI training.

Verify if the deployed
frontier AI system has an

adequate license or
certification.

Restrict access to
customers lacking licenses
as an AI developer for their

system.

Refuse to deploy an
unlicensed or

non-compliant AI model.

Disable AI systems that
demonstrate activity that is
undesirable, uncontrollable,

or in violation of
regulations (e.g., computer

worm-like AI system).

Table 1: Summary of the key governance capacities that compute providers can enable.

Technical Feasibility — Our analysis indicates these governance capabilities are likely to be tech-
nically feasible and possible to implement in a confidentiality- and privacy-preserving way using
techniques available to compute providers today. Compute providers often collect a wide range
of data on their customers and workloads, for the purposes of billing, marketing, service analysis,
optimization, and fulfilling legal obligations. Much of this data could also be used to support identity
verification, as well as verifying technical properties of workloads. At a minimum, providers have
access to billing information and can access basic technical data on how their hardware is used. This
likely makes it possible for compute providers to develop techniques to detect and classify certain
relevant workloads (e.g., whether a workload involves training a frontier model) and to quantify the
amount of compute consumed by a workload. Verification of more detailed properties of a workload,
such as the type of training data used, or whether a particular model evaluation was run, could be
useful for governance purposes but is not currently possible without direct access to customer code
and data. With further research and development efforts, compute providers may be able to offer
“confidential computing” services to allow customers to prove these more detailed properties without
otherwise revealing sensitive data. (Section 3)

1Focusing on essential data that informs without compromising privacy and confidentiality.
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Constructing an Oversight Scheme — Via Executive Order 14110 the US government is already
beginning to implement record keeping roles for compute providers by requiring them to implement
a Customer Identification Program (essentially a Know-Your-Customer (KYC) program) for foreign
customers, and to report foreign customer training of highly capable models to government. Expand-
ing the role of compute providers to also record and validate domestic customers using compute at
frontier AI thresholds could enable the US government to identify and address AI safety risks arising
domestically. Complementing these measures with verification and enforcement roles for compute
providers could further enable the construction of a comprehensive compute oversight scheme, and
ensure that AI firms and developers are complying with AI regulations. (Section 4)
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Figure 2: Additional measures, implemented by the Department of Commerce, would strengthen the
intermediary role of compute providers and enable a compute oversight scheme.

Technical and Governance Challenges — To realize a robust governance model, several technical
and governance challenges remain. These include identifying additional measurable properties of AI
development that correspond to potential threats, making workload classification methods robust to
potential evasion, and formulating privacy-preserving verification protocols. (Section 5.1)

The success of our proposed oversight scheme hinges on its multilateral adoption to prevent the
migration of AI activities to jurisdictions with less stringent oversight. For an international framework
to be durable and effective, it must address concerns from non-US governments. Cooperation will
need to account for complex privacy and oversight issues associated with globally spread data centers.
Compute provider oversight may affect competition in the AI ecosystem and raise concerns about
issues of national competitiveness, and, consequently, this may influence the ability of US providers to
offer products globally, including to foreign public-sector customers. Industry-led privacy-preserving
standards could help ensure trust, but further research is needed to incentivize broad international
buy-in to a global framework. (Section 1.4 and Section 5.2)

Conclusion — Compute providers are well-placed to support existing and future AI governance
frameworks in a privacy-preserving manner. Many of the interventions we propose are feasible with
the current capabilities of compute providers. However, realizing the full potential necessitates ad-
dressing technical and governance challenges, requiring concerted efforts in research and international
cooperation. As governments and regulatory bodies move to address AI risks, compute providers
stand as the intermediate node in ensuring the effective implementation of regulation. (Section 6)
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1 Introduction

As governments, international organizations, and regional bodies formulate approaches for governing
advanced AI, we ask: how can authorities gain visibility into development and deployment practices
and enforce rules? The visibility is currently obscured because frontier AI development largely takes
place within the private sector and often relies on self-reporting by AI companies, which may not
always be reliable due to growing incentives to obfuscate the results (Anderljung et al., 2023b; Mulani
& Whittlestone, 2023; Whittlestone & Clark, 2021). Ongoing governance processes worldwide
require answers to this question.

Jurisdictions including China, the European Union (EU), the United Kingdom (UK), and the United
States (US) are attempting to impose new reporting requirements on AI firms and compute providers
(Future of Life Institute, 2024; Jiang & Cao, 2023; Secretary of State for Science, Innovation and
Technology, 2023; Senator Scott Wiener, 2024; Sheehan, 2024; The White House, 2023b). They
are also beginning to regulate the development and deployment of models with potentially harmful
capabilities. Yet, enforcing these rules proves challenging; without appropriate mechanisms, it is
difficult to detect violations (Hacker, 2023; Whittlestone et al., 2023). Governance approaches, such
as the recent US Executive Order (The White House, 2023b) and the EU’s proposed AI Act (Council
of the European Union, 2024), have not developed practical means such as robust spot-checking
(randomized inspections to ensure compliance) and evidence-gathering mechanisms for achieving
these goals.

This paper demonstrates how compute providers—firms who make computing resources (“compute”
below)2 available for AI development and deployment—can effectively serve as an intermediary for
frontier AI governance between governments and the firms developing and deploying AI. In this role,
compute providers can act as a first line of detection of violations of a governance regime and even
defend against violations.

1.1 Compute Providers’ Intermediary Role

Large amounts of computing power are necessary for both the development and deployment of
frontier AI systems. Consequently, advanced AI models are trained, and deployed, in data centers3,
housing tens of thousands of AI accelerators. Because of the large upfront cost of building this
infrastructure , AI developers often access large-scale compute through models like IaaS4, also often
described as cloud computing.5 Throughout this paper, we refer to entities that provide access to this
computational power as compute providers.

Some AI firms currently manage their own data centers or maintain exclusive partnerships with
leading compute providers, known as hyperscalers.6 Notably, the most advanced AI research is
currently being conducted at or with these hyperscalers.7 While this situation introduces complex
challenges for regulatory oversight, our discussion also encompasses scenarios in which compute

2For a discussion of compute as a governance node, see Sastry et al. (2024).
3Our focus is on the entities that own and operate data centers, prioritizing the “legal entity” level of

abstraction over the physical locations or “data centers” themselves.
4This discussion extends to services that offer hardware access with sufficient flexibility for customer-

defined usage, which may occasionally encompass certain Platform-as-a-Service (PaaS) offerings. However,
our emphasis is on scenarios in which usage surpasses certain AI compute thresholds that are of relevance for
frontier AI. In contrast, services providing access to pre-configured AI models (Software-as-a-Service, or SaaS)
fall outside our defined scope of compute providers. (The suggested governance capacities could still help if the
regulation of these services is desired.)

5The term “cloud” is more associated with a specific business model rather than the underlying activity of
providing compute resources. For this context, we prefer the term “compute providers” to accurately reflect the
focus on the provision of computing power. This choice also allows us to include entities that predominantly
provide their computational resources internally (e.g., Meta (Janardhan, 2023)) within the scope of our discussion.

6The most notable hyperscalers include Microsoft Azure, Amazon Web Services (AWS), Apple, Bytedance,
Meta, Oracle, Alibaba, Tencent, and Google Cloud (Vailshery, 2024).

7Many prominent AI companies either operate as hyperscalers themselves or maintain strategic partnerships
with them. For example, OpenAI’s collaboration with Microsoft (Microsoft Corporate Blogs, 2023), and
Anthropic’s associations with AWS and Google Cloud (Amazon.com, Inc., 2023b; Anthropic, 2023) , exemplify
such relationships.
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providers are internal to, or closely linked with an AI firm.8 For example, an AI company should
not be able to circumvent the proposed guidelines by categorizing its usage as internal provisions or
failing to identify itself as a customer. This would ensure comprehensive coverage of all relevant
forms of compute provision for frontier AI.
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Figure 1: The intermediary role of compute providers in relation to AI companies and regulators.

1.1.1 Regulatory Intermediaries

The use of private sector entities as regulatory intermediaries is not a new concept (Abbott et al.,
2017a;b; Hay & Shleifer, 1998). Regulations for the aviation industry require airline operators to
maintain security plans, keep records on passengers, verify passenger identities, and deny boarding in
response to specified violations (ECFR, 2024; Aviation Transport Security Act, 2005). In the context
of communication service providers, some governments have enacted data retention policies that
require the collection and retention of information on customers’ activities for a specified amount
of time (Australian Attorney-General’s Department, 2015; Country Legal Frameworks Resource,
2023). Internationally coordinated anti-money laundering and counter-terrorism financing standards
require financial institutions to keep records, verify identities, and act to prevent illicit flows of money
(Financial Action Task Force, 2023).

Compute providers are already subject to regulations that dictate operational standards and data
management practices. For example, laws targeting Child Sexual Abuse Material (CSAM) impose
obligations on compute providers to detect and report such content (Amazon.com, Inc., 2023a; Biden,
2008; European Union, 2011). Data protection regulations, such as the General Data Protection
Regulation (GDPR) in the EU, set stringent requirements for data handling, privacy, and user
consent, which significantly affect how compute providers manage and secure user data (AWS,
2024a; European Union, 2016; Google Cloud, 2021). Additionally, legislation aimed at combating
terrorism and extremism may require compute providers to monitor and restrict the dissemination of
harmful content (European Union, 2021).

8These relationships and the concentrated market for large-scale compute have given rise to antitrust and
competition concerns, drawing scrutiny from regulators, including an ongoing inquiry by the US Federal Trade
Commission (Federal Trade Commission, 2024) and an investigation by the UK Competition and Markets
Authority (Milmo, 2023). While we acknowledge the need to carefully analyze how enhanced regulatory
measures may impact competition issues in the sector, we expect the impact to be limited and not broadly
significant. This is due to the focused scope of the measures, targeting only those compute providers capable
of supporting large-scale AI infrastructure and customers who are running large-scale workloads costing tens
to hundreds of millions of dollars or more. A detailed discussion of these antitrust concerns requires broader
analysis and is beyond the scope of this paper.
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1.2 Focus on Frontier AI

The customer base of AI compute providers is diverse, ranging from individuals and small enterprises
to large corporations and government agencies. However, the primary focus of this paper is on a
subset of AI systems known as frontier AI. Frontier AI systems are defined as “highly capable general-
purpose AI models that can perform a wide variety of tasks and match or exceed the capabilities
present in today’s most advanced models” (UK DSIT, 2023).9 These systems represent the frontier
of current AI capabilities and currently require substantial compute resources for their development
and operation (Anderljung et al., 2023a; Sastry et al., 2024; Sevilla et al., 2022).

Given the significant compute and research demands, only a small number of entities possess the
necessary resources to develop frontier AI systems. This paper addresses primarily large corporations
for regulatory consideration. The intent of the proposed regulatory frameworks is not to encompass
the entirety of compute providers' customer base indiscriminately. Rather, the focus is limited to
those actors who are in a position to develop or deploy frontier AI systems—based on their compute
usage—warranting closer scrutiny and potential regulation. This targeted approach ensures that
regulatory measures are both effective and proportional, avoiding unnecessary encumbrances on
smaller entities or individual users who do not fall within the relevant frontier AI activities.10 Sastry
et al. (2024) discuss the importance of compute for frontier models in more detail and examine the
conditions under which compute, and by extension, compute providers, serve as effective policy
levers, as well as scenarios and conditions where their impact is limited.

1.3 Overview of our Contributions

We suggest that compute providers can play a key role in governance regimes similar to the examples
listed above via four key capacities: as securers, record keepers, verifiers, and enforcers. Security
can restrict access to AI-related IP, such as the model weights, from bad actors. Record keeping
allows selected information gathering for insights into AI activities and allows for post-incident
attribution. Verification includes checking customer activities and AI systems to verify compliance
with regulations and standards. Enforcement entails the restriction or limitation of compute access
for non-compliant customers.

We analyze the technical means of performing each of these functions. Concerning security, we
outline the role many compute providers already serve in establishing baseline levels of physical,
infrastructure, and network security, and briefly discuss how this role should be expanded to address
more sophisticated threats. Regarding record keeping, we describe the information that is likely
already available to compute providers and the potential insights it can offer. Regarding enforcement,
we review the capabilities of data center providers to facilitate the enforcement of standards, either of
an external governance regime or of their own terms of service.

We focus much of our technical analysis on the role compute providers could play in verification
in a targeted and privacy-conscious manner. We describe information that is already available to
compute providers that can be used for four sub-categories of verification: workload classification,
compute accounting, verification of properties of code and data (“detailed workload verification”),
and identity verification, such as Know-Your-Customer (KYC) regimes (Egan & Heim, 2023; Smith,
2023). Several of these techniques could be used in real-time to establish whether a customer is
engaging in an activity that might be subject to regulatory oversight. If compute providers were to
implement these techniques, they could likely distinguish whether their customers are engaging in
activities such as training a large model, or engaging in inference at scale, as well as quantify the
amount of compute consumed by large workloads

After describing the technical possibilities, we focus on the US, explaining how some of the techniques
we describe can facilitate compliance with the mandates of the Biden Administration’s 2023 Executive
Order 14110 on Safe, Secure, and Trustworthy AI (hereafter “the AI Executive Order”) and support
its overall objectives (The White House, 2023b). We identify a set of next steps for compute providers
to verify that model developers have met their Section 4 requirements under the AI Executive Order.

9Also see Section 2.1 of Anderljung et al. (2023a).
10In Section 5.2, we elaborate on privacy and confidentiality considerations, emphasizing that our proposed

regulatory measures are specifically aimed at key actors in frontier AI development, rather than being broadly
applied to the entire customer base of compute providers, such as individuals. Heim & Egan (2023) and Egan &
Heim (2023) also discuss the idea of “above-threshold compute usage.”
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We further argue that the broad goals of the AI Executive Order could benefit from the full range of
techniques described here, particularly when internationalized. In the final section, we highlight the
technical and governance challenges and opportunities for technical governance and policy research.

1.4 Limitations and Future Research Directions

In this paper, we propose a conceptual model wherein compute providers improve the efficiency and
effectiveness of the developing regulatory AI ecosystem. Our discussion is not a comprehensive
policy blueprint ready for implementation. While certain aspects of our proposal may be directly
actionable, other aspects require more evaluation. Our primary objective is to argue for particular
roles for compute providers and to stimulate a debate: Should compute providers embrace the roles
we have outlined? Which of the proposed activities are most viable, and which require further
research?

While we emphasize the need to internationalize our proposed concept, we acknowledge that this
aspect is not explored in detail, especially the legal aspects. The complexity of such an analysis
extends beyond the scope of this paper, calling for detailed legal and policy analysis. Our aim is to
motivate more research in this domain, recognizing the need for a more comprehensive investigation
into the intricacies involved in applying these regulatory concepts across different jurisdictions. This
is particularly relevant given the intricate challenges that have emerged in the past, such as those
surrounding the EU-US Privacy Shield, and others (Buttarelli, 2018).

Some of the suggested regulatory measures may have implications on privacy and confidentiality
for customers of compute providers and we recognize that increasing legal reporting requirements
must be carefully weighed against the potential for misuse or government overreach. However,
our focus—frontier AI—largely pertains to compute-intensive workloads undertaken by a limited
number of corporate entities. This simplifies the regulatory landscape with respect to information
describing these workloads and the companies running them, as stringent privacy regulations like the
GDPR safeguard the personal data of individuals (“natural persons”), while typically imposing fewer
constraints on data related to companies (“juridical person”).

The urgency of this discourse is magnified by the KYC requirements outlined in the US’s AI Execu-
tive Order, with implementation currently being progressed through the Department of Commerce’s
proposed rule (Federal Register, 2024).11 Reaching a comprehensive and thoughtful regulatory
framework requires going beyond unilateral measures, which could lead to unintended adverse conse-
quences. International coordination is crucial to address the questions arising from the intersection of
AI regulation with international trade law, confidentiality, and privacy. This paper contributes to the
dialogue and advocates for an AI regulatory framework that is collaborative, nuanced, effective, and
globally inclusive and responsive.

2 Governance Capacities of Compute Providers

In the current ecosystem, frontier AI models are trained and deployed using large compute clusters
consisting of thousands to tens of thousands of AI accelerators (Pilz & Heim, 2023; Sevilla et al.,
2022). The concentrated supply chain, in addition to the detectability, excludability, and quantifiability
of physical computing hardware, makes compute a particularly effective node of governance compared
to other inputs to AI development (Belfield & Hua, 2022; Pilz & Heim, 2023).

Therefore, the physical infrastructure required for AI development and deployment can be used as
an instrument to enhance existing AI regulations—making them more efficient and effective while
enabling new policies. Compute providers can perform these functions via four key capacities: as
securers, to protect IP; record keepers, enabling data collection for analysis and future reference;
as verifiers of customer activities, enabling appropriate oversight; and as enforcers, taking actions
against norm and rule violations. We discuss these capacities in this section in more detail.

This approach offers a nuanced alternative to broad measures such as chip export controls (Allen,
2022), positioning compute providers as a more precise and adaptable governance mechanism within

11Especially, as some of the currently proposed measures may be overly broad, potentially violating confiden-
tiality principles.
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the AI supply chain. Unlike controls on physical computing hardware, the dynamic model of compute
provision affords a higher degree of flexibility and specificity (Table 1 in Heim & Egan (2023)).

2.1 Compute Providers in the AI Compute Supply Chain

In the AI supply chain, compute providers act as an intermediary, offering computational resources
to customers. These providers house large numbers of chips in their data center facilities, operating
them cost-effectively in large quantities with necessary elements such as power, land, cooling, and
connectivity, and optimizing them for developing and deploying AI models (Figure 3). With current
technologies, training large AI systems requires physically co-located chips. This has caused much
of contemporary AI deployment and development to occur in large facilities, wherein compute is
made available to customers digitally and remotely, often through models like Infrastructure as a
Service (IaaS) or cloud computing. The compute provider industry has seen significant consolidation
in recent years due to the economic advantage of scale (Richter, 2024).
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Figure 3: The compute supply chain including compute providers in the middle. Like the production
of state-of-the-art AI chips, compute providers’ market shares are concentrated. (Figure from Sastry
et al. (2024).)

By capitalizing on their position as infrastructure providers, compute providers can play a key role in
regulating AI companies. Leveraging compute in this manner can help reduce regulatory burdens
because each compute provider (i) typically services multiple AI firms,12 thereby streamlining the
regulatory process, and (ii) screens potential targets for regulation by the scale of compute usage
(which can be supplemented by further criteria), whether it is used for training or deployment. This
follows the model of how financial institutions operate under KYC schemes (Financial Crimes
Enforcement Network, 2005; 2024; Egan & Heim, 2023), although compute providers with the
capacity for frontier AI development and deployment are much fewer in number than banks.

12The size of the customer base of compute providers varies significantly. Typically, compute providers offer
their services to a wide range of entities, with most usage falling outside the scope of our primary concern in this
paper (see Section 1). Nonetheless, our analysis also includes large compute owners who exclusively use their
resources internally. For example, a major technology company cannot circumvent the guidelines proposed in
this discussion by merely categorizing its usage as “internal provisions” or not identifying itself as a “customer.”
This approach ensures comprehensive coverage of all relevant forms of compute provision for frontier AI.
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2.2 Governance Capacities

Compute providers can facilitate effective AI regulation via four key capacities. They can be securers,
record keepers, verifiers, and, in some cases, even enforcers (Section 2.2 and Figure 4).

Governance Capacities

Security Record Keeping Verification Enforcement

Helping provide physical
and cybersecurity measures

to secure the AI model,
related intellectual

property, and personal and
confidential data.

The selective collection,
organization, and

maintenance of high-level
information of a compute
provider’s infrastructure

usage, such as a customer’s
compute usage data.13

Actively verifying customer
identities, specific activities,
and high-level AI systems’

properties.

Restriction or limitation of
compute access to

customers or workloads for
non-compliant customers.

Enables

Enables shared security
standards to protect the

public good, such as
safeguarding critical

infrastructure and helping
prevent model theft.

Increases visibility into AI
development, links

customers and their usage
to real-world actors, and

enables post-incident
attributions and forensics.

Ensures that the
deployment and

development of AI systems
adhere to regulations or
company policies and
reported properties.

Directly impacts the
capability of customers to

develop or deploy
advanced AI systems,
ensuring adherence to

rules.

Examples

Help prevent IP (e.g.,
algorithms), model weights,

and training data from
being stolen by malicious

actors.

Help prevent attacks on
large-scale deployments of
foundational models that

could shut down dozens of
critical services

nationwide.

Obtain insights into
national compute use

trends for policy
formulation, such as

compute distribution (e.g.,
US NAIRR).

Enable monitoring for
suspected violations of the

reporting requirements
under Executive Order

14110.

Collect information on the
environmental impact of AI

compute use.

Confirm compliance with
mandatory reporting over

training compute
thresholds.

Verify compliance with
data usage guidelines for

frontier AI training.

Verify if the deployed
frontier AI system has an

adequate license or
certification.

Restrict access to
customers lacking licenses
as an AI developer for their

system.

Refuse to deploy an
unlicensed or

non-compliant AI model.

Disable AI systems that
demonstrate activity that is
undesirable, uncontrollable,

or in violation of
regulations (e.g., computer

worm-like AI system).

Table 1: Summary of the key governance capacities that compute providers can enable.

These governance capacities are distinct from but related to obligations to report information to
governments. In many cases, it will be appropriate for compute providers to collect and retain
information internally and only provide information to governments in response to existing legal
authorities (for example, identified violations of sanctions, or in response to legal warrants). In other
cases, for example, where a customer is undertaking a large training run, regulators may see fit to
mandate proactive reporting. Record keeping can ensure that compute providers are aware of, and
able to comply with, broader regulations to increase visibility and oversight.

2.2.1 I. Security

Compute providers, as custodians of sensitive data and AI-related IP, have a distinct capacity for
governing and implementing information security measures that protect AI systems.

13Focusing on essential data that informs without compromising privacy and confidentiality.

12



Compute Provider

Compute Provider

Compute Provider

Compute Provider

I. Securing

II. Record 
Keeping

III. Verification

IV. Enforcement

�� Provider takes physical and cybersecurity 
measures to secure the AI model, related 
intellectual property, and personal and 
confidential data.

Regulator

Regulator

Regulator

�� Provider identifies an AI 
Company's violation 
(e.g., via verification).

�� Provider takes predefined actions, such as 
reporting the violation to an Regulator 
and/or restricting or limiting the AI 
Company’s access to compute.

�� A Regulator may require information from 
the Provider through law/regulations in 
accordance with regulations.

�� Provider shares information in 
case of a violation or in response 
to Regulator request.

�� Regulator can investigate the AI Company in case of a violation.

AI Company

�� Provider selectively collects, organizes, 
and maintains high-level information on 
the AI Company's infrastructure usage, 
focusing on essential data that helps 
validate regulatory compliance without 
compromising confidentiality or privacy.

�� Provider actively verifies the AI 
Company’s identities, specific 
activities, and AI Systems' high-level 
properties for compliance.

AI Company

AI Company

AI Company

Figure 4: Overview of the different governance capacities and how they relate to three actors:
customers (the AI developers and deployers), compute providers, and regulators.

Frontier AI models represent considerable financial, computational, research investments, and power-
ful tools that could be misused for financial or political gain; this makes them highly attractive to cyber
attackers and other adversarial actors (Cottier, 2023; Sevilla et al., 2022). Security measures should
extend beyond safeguarding model weights to include the protection of the model’s architecture, its
algorithmic innovations, training data, and other related intellectual property (IP) (Nevo et al., 2023).
Therefore, it is important to take robust cybersecurity measures proportional to these risks. These
measures could be legally mandated, as with the physical and cybersecurity precautions currently
required from data centers that handle HIPAA- and ITAR-compliant health (Office for Civil Rights,
2016) and defense data14, as preventing the theft of potentially dual-use AI intellectual property and
disruption to critical AI infrastructure are matters of public good.15

14ITAR compliance requires arms-related data to be secured from foreign persons. There is no formal
certification process for cloud providers, although many choose to be audited by a third-party organization
certified under the Federal Risk Authorization Management Program (FedRAMP) (Code of Federal Regulations,
2024).

15Such regulations could be enforced by chartering or registration (for example, firms cannot accept federally
insured deposits unless chartered as a bank, credit union, or thrift) (Congressional Research Service, 2023), or
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Figure 5: The security measures implemented by compute providers to help protect AI company’s
models, intellectual property, and confidential data.

Such a measure should take into account existing industry practice: Large-scale compute providers
already allocate significant resources to physical and cybersecurity, given strong business incentives to
keep clients’ sensitive data secure (including, in some cases, classified government data (Lohr, 2023).
When multiple AI firms utilize a single compute provider, they inherently benefit from the provider’s
comprehensive physical and cybersecurity measures, which benefit from the economies of scale
and significant investment. Nevertheless, compute providers remain vulnerable to malicious cyber
actors and can be the subjects of successful cyber attacks (Gatlan, 2023; Vanian, 2024). The potential
for frontier AI to be stolen, misused, or to become critically important infrastructure, may warrant
the development of stronger security requirements for the compute providers that train and deploy
them. This necessity was reflected in the voluntary White House Commitments (The White House,
2023a) and the Hiroshima International Guiding Principles for AI, which advocate for strengthened
safeguards in this domain (European Commission, 2023a;b).

It is crucial to acknowledge that the responsibility for ensuring information security does not rest solely
with compute providers. The efficacy of their security measures requires robust security practices and
collaborative efforts by AI companies themselves. Without these companies’ proactive engagement
in safeguarding their operations, the protective mechanisms implemented by compute providers could
prove ineffective. Therefore, these efforts are not substitutive but rather complementary, with both
compute providers and AI companies sharing responsibility.

2.2.2 II. Record Keeping

Record keeping describes the process of collecting, organizing, and maintaining information on a
compute provider’s customers and their infrastructure usage. Compute providers are inherently record
keepers by virtue of their role and technical necessity. They store and process valuable technical
data during large AI deployments and training runs for billing purposes, resource management,
and service-level agreement tracking (see Section 3 for more detail). Provided that robust privacy
protections are in place, this information could be useful to regulators in overseeing the development
of advanced AI systems. We recommend that regulators and providers focus on essential data that
informs AI regulation without compromising privacy and confidentiality (which we discuss in more
detail in Section 5.2).

Record keeping serves three main purposes: it allows more visibility into the developments of
AI generally, helps link customers and their usage to real-world actors, and enables post-incident
attributions and forensics. First, it provides visibility into AI developments, which is important
for monitoring the trajectory of AI systems and their compute requirements across various sectors
(Sastry et al., 2024). As we have seen demonstrated by recent national compute initiatives (Center for
Open Science, 2019; UK DSIT & Donelan, 2023; The European High Performance Computing Joint
Undertaking, 2023; U.S. National Science Foundation, 2024), compute provision can be a mechanism
to guide AI development and formulate policies for a beneficial distribution of compute resources
(Besiroglu et al., 2024; Sastry et al., 2024). By gathering aggregated and anonymized compute usage
data, governments are better positioned to formulate policies that mitigate unequal access, reduce
market monopolization, address potential negative impacts, and boost beneficial innovations aligned
with national objectives (Sastry et al., 2024).

tied to a license to acquire specialized AI compute hardware, as is already in place for the export of certain
equipment from US companies (AMD, 2024).
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Figure 6: The compute provider collects and manages essential usage data on the AI company
and its infrastructure usage, focusing on key data that helps validate regulatory compliance without
compromising privacy. This facilitates greater transparency into AI advancements, could link compute
use to real-world actors, and enables effective post-incident response and forensics.

Second, record keeping enables compute providers and regulators to identify their customers and the
corresponding legal entities (KYC). With the development of frontier AI regulations, it will likely
become necessary to verify the identity of compute customers utilizing large amounts of compute
and ensure that they have the necessary certifications and safeguards in place, if they plan to build
and deploy advanced AI systems. Furthermore, countries may wish to enforce export controls on
compute, restricting the sales of data center capacity to actors with improper sources of funding (e.g.,
terrorist organizations) or originating from sanctioned geographical areas (US BIS & US DOC, 2023;
Heim & Egan, 2023).

Third, and related to customer verification, record keeping enables post-incident attributions and
forensics (O’Brien et al., 2023).16 Information about developers and their activities is critical for
assigning liability or enhancing existing systems in the aftermath of incidents. This is akin to
mandatory record keeping in the financial and telecommunications industries for law enforcement
purposes (legislation.gov.uk, 2014; U.S. Securities and Exchange Commission, 2003). We propose
careful legislation that requires compute providers to maintain relevant records while taking into
account privacy concerns and the regulatory burden. This is especially important in cases of potential
unlawful use where the developers may not keep adequate records in the absence of legislation. For
example, high-level compute utilization data could be made available to regulators upon request,
while detailed retained information may be kept confidential unless required for enforcement or legal
proceedings.

In contrast to verification, which is introduced below, record keeping does not require active process-
ing by the compute provider. Instead, it describes the collection of specific data, which is already
happening to some extent, to make more information available to governments. For example, it
could inform national policy decisions and strategies (Whittlestone & Clark, 2021), and help prevent
and respond to serious incidents (where required under warrants and/or by regulation). The use of
aggregated and anonymized compute usage statistics could offer valuable insights into trends in
AI development and corresponding compute demands (e.g., to learn more about the impacts of the
compute divide (Ahmed & Wahed, 2020; Besiroglu et al., 2024)). This approach allows regulators to
understand and respond effectively to the evolving needs of the AI economy without encroaching
upon the privacy and confidentiality of companies. This could operate on a need-to-know basis,
ensuring that only pertinent information is gathered and utilized in a way that minimizes regulatory
burden.

Furthermore, transparency requirements for environmental accountability, particularly in the context
of compute providers’ substantial energy consumption, have been suggested (OECD, 2022). Mandat-
ing reports on the environmental impact of compute providers could equip regulatory bodies with the
insights necessary to fulfill environmental objectives. The EU already has implemented reporting
requirements.17 Concurrently, numerous compute providers are already advancing toward greater

16An example of this could be in the event of an AI system malfunctioning and causing financial loss or
physical harm, record keeping allows for the traceability of the AI’s development and deployment process,
helping to identify the origin of the fault (forensics) and parties responsible (attribution).

17“Under the directive, owners and operators of data centers with 500 kilowatts or more of installed IT
capacity will need to report their 2023 energy performance by May 15, 2024. That includes statistics about
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environmental transparency and have pledged to undertake climate initiatives. (Amazon.com, Inc.,
2024; Microsoft Azure, 2024a; Google Cloud, 2024b).

2.2.3 III. Verification

Compute providers can also actively verify customer compliance with regulatory requirements,
providing AI firm oversight. Similar to banks and other financial intermediaries, compute providers
can actively verify the identity of customers and key customer activities, checking that the properties
of AI systems being deployed or developed match customer reporting. This might include verifying
the type of computational workload run by the customer (e.g., training an AI model, or deploying a
model at scale) as well as claims about the total amount of compute used, or the type of data used in
the training process.18
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Figure 7: The compute provider actively verifies the AI company’s identities, specific activities,
and/or properties of AI systems for regulatory compliance.

As we will discuss in Section 3, some of these capabilities, such as identifying whether a customer
is training or deploying an AI model, can likely be implemented using existing data collected by
compute providers. Providers could use this information to catch regulatory violations, including
breaches of model training requirements, wherein developers avoid reporting requirements and the
unauthorized deployment of AI models at scale.

Verification rules should balance between regulatory requirements, customer privacy laws, and safety
considerations, similar to record keeping practices. Spot checks (including those triggered by reports
or events that raise suspicion) may be adequate for less risky activities, while continuous monitoring
to ensure that customer-submitted records are accurate may be mandated for riskier ones. Providers
can then check if mandated or adequate risk practices are applied. AI safety regulations could be
applied only to those using large amounts of compute and waived for smaller customers. Additional
factors may warrant further examination, like a history of non-compliance or inclusion on restrictive
lists like the US Department of Commerce’s Entity List, which serves to protect national security
interests. The standardization and aggregation of reporting processes across providers is crucial for
ensuring effective cross-provider verification. This uniformity prevents AI developers from evading
regulations by splitting their training or deployment activities among multiple providers.

Verification becomes vital in cases of behavior that may indicate non-compliance, such as a failure to
report details of a training run mandated by regulations like the AI Executive Order. For example,
if there is credible evidence of a sophisticated AI model having been trained, regulators could
request certain verifications from compute providers to confirm that model developers or providers
are in compliance. This approach is similar to selective tax audits, providing the regulation with
more enforcement capability (Advani et al., 2023). Even though immediate action might not be
taken, having access to such information allows for inspection if necessary, especially in response
to suspicious activity. Compute providers could respond to such regulatory requests by verifying
customer activities and providing an additional check that model developers are following rules. This
process may involve asking customers to provide justifications or evidence for their activities in the
same way that financial institutions can inquire about suspicious transactions from their clients.

installed power, incoming and outgoing data traffic, total data stored and processed, energy consumption, power
usage, temperature set points, waste heat utilization, and use of renewable energy.” (Korolov, 2023)

18Hardware-enabled mechanisms for verification and enforcement of governance regimes are discussed in
Aarne et al. (2024) and Kulp et al. (2024).
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Unlike record keeping, verification demands more proactive engagement from compute providers.
Verification could span a wide range of different specific activities and may include confirming
the identities of customers who use substantial compute resources or checking that the workload
being executed matches their declared type. In complex cases (such as frontier model training)
or direct violations of reporting requirements, the compute provider may flag the case and refer
it directly to regulators. It is important to note that several open questions regarding privacy and
technical feasibility must be investigated and potentially addressed prior to implementation. These
considerations are discussed in the Section 5.

For illustrative purposes, imagine a scenario in which regulations require AI developers to report their
compute usage, or notify a government prior to training a model above a certain compute threshold,
as has been outlined in the AI Executive Order. In such cases, an AI developer could be required
to provide information about compute usage to the provider. This allows customers to demonstrate
that their computing power was employed for specific purposes, such as training several smaller
models rather than a single larger model, which might be subject to different compliance standards.
The provider then checks that the actual usage is consistent with the developer’s representations. If
inconsistencies are identified, the compute provider can flag these events for further investigation
and compliance checks. This arrangement, which uses compute providers as an intermediary, helps
minimize regulatory burdens on the AI industry. Similarly, a compute provider could require a
model developer to provide proof that they have appropriately notified the government of a threshold-
exceeding training run prior to the compute provider allowing access to related compute.

2.2.4 IV. Enforcement

Compute providers can also aid regulatory enforcement. By virtue of controlling the AI data centers
themselves, providers have the ability to directly deny access to rule-breaking customers, and,
therefore, prevent the customer from developing or deploying certain kinds of AI systems with that
provider. The compute provider might limit compute resources devoted to workloads that raise red
flags pending further investigation. Similarly, record keeping and verification processes could trigger
regulatory enforcement measures by other actors, such as the Department of Justice in the US.
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Figure 8: The compute provider detects violations by the AI company, e.g., via the verification
process, and can take appropriate enforcement actions, such as restricting or limiting access to
compute.

In addition to assisting governmental enforcement, compute providers can enforce their terms of
service (ToS). By expanding their ToS to include stipulations on AI development and usage to
promote safety, providers can autonomously enforce compliance. This self-regulation approach goes
beyond merely reacting to government regulations; it could be an active promotion of responsible AI
practices—reflecting the providers' commitment to ethical standards in AI development.

Direct enforcement by compute providers can come in multiple forms. On the most basic level,
regulation could be crafted to require providers to refrain from providing compute to developers
to train a model above a certain threshold until the developer proves they have taken appropriate
regulatory steps, such as notifying the government of a large training run or obtaining relevant
approvals. Providers could also help regulators enforce rulings (e.g., when a license is denied, or
when a government is trying to prevent a malicious actor from accessing compute) or automatically
deny the execution of AI software depending on whether the model is approved. More fine-grained
restrictions, such as slowing access or limiting certain workloads until the proper regulatory approvals
are issued (similar to financial service providers temporarily flagging a transaction for further review),
could also be enforced. Compute providers could monitor the activity of customers using large
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amounts of compute that have stated they are not engaging in model training for signs they are
circumventing the types of requirements laid out above.

Enforcement works most effectively in conjunction with verification. Detected violations can be
promptly acted upon through the compute providers' capabilities. However, it is crucial to keep these
two capacities distinct. Enforcement actions can be based on information beyond what is verified by
compute providers, for example, in response to intelligence provided by law enforcement agencies.
Likewise, violations identified through the verification process may be addressed through means
other than restricting compute access. For example, if a customer is found to be out of compliance
with existing regulations, or the compute provider’s ToS, the provider can restrict their access to the
computational resources completely and report them to the relevant authorities. The provider can
also use less onerous enforcement mechanisms, e.g., turning off the workload of concern, reducing
the amount of available compute resources, or fining the actor.

3 Technical Feasibility of Compute Providers’ Governance Role

This section examines the technical feasibility of activities within each of the governance capacities
introduced in the previous section.

We assess feasibility in the context of the technical capacities available to compute providers today,
and the capacities that could foreseeably be developed. An overview of the technology stack available
to compute providers can be found in Appendix A and is recommended for readers unfamiliar with
data center technology.

Key terms used in this section

Workload: A computational task, defined by a specific instance of software (i.e., written or
compiled code) that will be run on a hardware configuration. For example, training an AI
model is a type of workload. The input data to the workload may or may not be known in
advance.

Operation (OP): A single calculation run on computer hardware, typically a multiplication
or addition of two numbers. AI workloads usually involve large numbers of matrix-multiply
operations, which are implemented as repetitive multiplications and additions (known as
multiply-accumulate).

AI accelerator: A hardware device (typically a specialized chip) designed for fast and
efficient execution of AI workloads. Typically AI accelerators excel at simple, parallel
calculations, which can also be useful for graphical and scientific computing workloads. This
is an umbrella term for both current hardware paradigms (such as GPUs and TPUs), as well
as novel future designs.

Node: A single computer within a data center. Each node is a distinct unit with its own
processing power, memory, and storage, capable of running a workload by itself, or in
collaboration with other nodes. Each node may contain multiple AI accelerators.

(Computing) cluster: A group of linked nodes that can work together to process workloads.
Typically used for workloads requiring significant computational resources, such as large-scale
AI training.

Data center: A facility that hosts computing clusters (or other computing infrastructure) and
provides the supporting infrastructure needed to operate them efficiently.

In summary, compute providers are responsible for maintaining secure premises, and physical and
network infrastructure. They also operate controls over that infrastructure (at both the hardware and
software level) that allow them to grant and revoke hardware access to particular customers, store and
maintain customer data, track hardware performance, and debug technical issues. These same tools
could allow compute providers to engage in security, record keeping, verification, and enforcement
for frontier AI regulation, while preserving existing industry norms surrounding confidential and
private data. Table 2 maps these governance capacities onto the relevant technical capacities available
to compute providers, and indicates the current feasibility of using them.
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Governance
capacity

Relevant technical capacities of compute
provider Current technical feasibility

Security

Physical security (e.g., locks, guards, surveillance).

Infrastructure-level security (e.g., access controls,
secure firmware, resource isolation).

Network security (e.g., firewalls, network authenti-
cation).

Providing additional cybersecurity services (e.g.,
user access management, encrypted storage).

Feasible for low-end threats (in a supporting
role). Many compute providers provide decent
default levels of physical, infrastructure, and
network security. With adequate customer in-
vestments in cybersecurity, these measures are
likely sufficient against opportunistic attackers,
but not against well-resourced and persistent ex-
pert attackers.

Record
keeping

Data record collection and maintenance (e.g., for
required verification activities).

Securing data records (e.g., encryption at rest and
in transit, managing access).

Highly feasible. Compute providers can (and do)
collect a wide variety of records on customers
and their activities. These records are typically
kept secure, and retained for as long as necessary
to comply with relevant regulations or support
internal business use cases.

Verification

Identity verification: ensuring a customer and/or
user is who they say they are.

Workload classification: determining whether a
customer workload falls within a category relevant
to regulatory requirements (e.g., training a very
large AI model).

Compute accounting: estimating the number
of operations consumed by a workload (e.g.,
to validate compute threshold-based reporting
requirements19).

Detailed workload verification: verifying aspects
of the specific code or data used in a workload
(e.g., to validate whether a customer is complying
with reporting requirements for certain high-risk
training data20).

Identity verification: likely feasible with a suffi-
ciently rigorous process, focused on customers
accessing large-scale compute resources.

Workload classification: likely feasible for de-
tecting large-scale pre-training and inference
workloads.

Compute accounting: feasible, with multi-
ple approaches possible for large-scale pre-
training/inference workloads.

Detailed workload verification: currently not
possible without directly observing customer
code or data. “Confidential computing” tech-
niques could change this.

Enforcement

Account-level enforcement: revoking service ac-
cess to particular customers/accounts/users.

Model-level enforcement: revoking service access
where services are used to deploy particular mod-
els, or where models are displaying dangerous be-
havior (e.g., a computer worm-like AI system).

Account-level enforcement: highly feasible,
compute providers have both physical and soft-
ware management-based control over their hard-
ware; this is widely used.

Model-level enforcement: currently not possible
without directly observing customer code or data.
This may become possible with some technical
effort.

Table 2: Overview of relevant technical capacities available to compute providers and an assessment
of their technical feasibility.

19For example, see the training compute threshold-based reporting requirement in the AI Executive Order
(The White House, 2023b).

20For example, the AI Executive Order (The White House, 2023b) creates specific reporting requirements on
developers for models primarily trained with biological sequence data. It may become useful for these kinds of
reporting requirements to also be validated by compute providers, or for compute providers to offer verification
tools to developers (e.g., “confidential computing” services).
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3.1 Security

Compute providers usually provide security at certain technology layers, whereas other layers are left
up to customers (Google Cloud, 2023; AWS, 2024h; CoreWeave, 2023). The compute provider is
typically responsible for:

• Physical security, which includes protecting data center premises with locks, cameras,
guards, and surveillance.

• Infrastructure security, which includes ensuring that hardware is up-to-date with the latest
firmware security patches, securely disposing of old hardware, restricting physical/virtual
access to infrastructure to approved personnel for management and maintenance purposes,
and ensuring appropriate isolation of critical system resources across different customers
and workloads

• Network security, which includes operating firewalls and providing other forms of network-
level security and isolation.

These physical, infrastructure, and network security measures are sufficient to provide customers
with a baseline level of information security, one that many customers could not achieve on their own.

Customers are then generally held responsible for the parts of the technology stack they have control
over, which encompasses many aspects of cybersecurity, including protecting data generated or
collected by their workloads, ensuring their employees are well-trained in security best practices,
and implementing access control policies based on different permission levels. Many compute
providers, especially larger providers, offer cybersecurity software-as-a-service products for their
customers to help them implement these measures; many of these products are free and/or standard
with infrastructure offerings. These additional services typically provide the customer the ability to:

• Securely manage user access to resources in their account

• Work with encrypted data storage in transit and at rest

• Manage and secure inbound/outbound traffic from nodes

• Define different levels of security within different regions of their infrastructure

In the context of protecting frontier AI workloads, if a customer is working with a security-conscious
compute provider, and the customer has systematically implemented industry best practices for
cybersecurity, they are likely well-protected against most opportunistic attackers. However, these
measures are almost certainly inadequate to defend against well-resourced, expert attackers, such
as nation-state-backed hacking groups (also known as “advanced, persistent threats (APTs)”). Such
threats are of significant concern for frontier AI, given the potential economic returns of model theft,
and risks of misuse (Nevo et al., 2023).

As discussed in Section 2.2.1, it is therefore important to strengthen security standards for frontier
AI workloads. In addition to requiring strong cybersecurity standards for frontier AI developers,
regulators could define enhanced security standards for compute providers who offer infrastructure
capable of training frontier models to close security gaps.21

3.2 Record Keeping

Record keeping is highly feasible using tools and metrics currently available to compute providers,
who already collect a wide range of data on customers and service usage for:

• Accurately billing customers

• Marketing new services to customers

• Maintaining and optimizing service provision

• Detecting and responding to fraud, abuse, security risks, and technical issues

21For an example of what such standards might look like, see security requirements in the Federal Risk
Authorization Management Program (FedRAMP). FedRAMP assigns different levels of requirements depending
on the sensitivity of the use case (FedRAMP, 2024).
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• Complying with legal obligations, such as financial record keeping

Compute providers also share these records with third parties for activities such as:

• Exchanging information with other companies for fraud prevention, detection, and credit
risk reduction

• Providing third-party vendors with information for promotional and marketing purposes

• Complying with legal obligations, such as an enforceable government request

Compute providers typically have well-defined privacy policies around these records, including
specific retention and security policies based on the sensitivity and business- or legal use cases for
different kinds of records. Some of this data will likely be useful for verification activities relevant to
frontier AI governance. The specific data attributes generally collected by compute providers can be
found in Table 3 below, mapped onto specific use cases for governance purposes. This information is
based on conversations, public data collection, and privacy policies available from a representative
sample of large and small compute providers (AWS, 2024g; CoreWeave, 2022; FluidStack, 2022;
Google Cloud, 2024c; Lambda Labs, 2022; Microsoft, 2024a).

3.3 Verifying

There are a range of verification activities that compute providers could perform to support frontier AI
governance. Primarily, it will be useful for compute providers to verify the identity of any customer
seeking to access a hardware configuration capable of efficiently training a frontier model (“identity
verification”), as discussed in Egan & Heim (2023) and by Microsoft (Smith, 2023). It may also be
useful for compute providers to serve as an independent form of validation for different properties of
frontier AI workloads. We find that data attributes already widely available to compute providers can
likely enable them to adequately verify two key properties of a workload that are currently highly
relevant for frontier AI governance:

• The stage of the AI lifecycle the workload fits into, e.g., large-scale model training or
inference (“workload classification”)

• The quantity of compute consumed by the workload (“compute accounting”)

In the future, it may also be useful for compute providers to verify aspects of the particular code
or data used in a workload, such as the specific model that was deployed, or the type of data used
to train a model. We describe such activities as “detailed workload verification.” Currently, this
is largely not possible without directly observing confidential customer code or data. However,
with some technical development work, it may become possible to implement wider use of “trusted
execution environments” to allow customers to prove certain properties of their workloads to their
compute provider (or directly to a regulator) without revealing other sensitive data (Aarne et al., 2024;
NVIDIA, 2023). We now describe each of these potential verification activities in more detail.

3.3.1 Identity Verification

Identity verification (also commonly known as “Know-Your-Customer (KYC)”) is a useful mea-
sure to ensure customers are meeting applicable rules, and enforce relevant penalties. This may
include ensuring particular developers are reporting relevant large-scale training runs or enforcing
export controls that prevent certain customers (e.g., those with links to foreign military/intelligence
organizations) from accessing particular services. In the beginning of 2024, the US Department of
Commerce proposed new regulations that place explicit identity verification requirements on US
compute providers offering services to foreign customers (Federal Register, 2024). Egan & Heim
(2023) discuss in further detail the mechanisms of a KYC scheme for customers accessing large-scale
compute, drawing on lessons from the financial sector.
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Attribute category

Uses (in terms
of specific

verification
activities)

Involves collection
of data not

already widely
collected?22

Current state of collection,
validation, and possible

circumvention23

Customer information

e.g., name, billing address,
credit card data, IP addresses,
date and time of access, de-
vice identifiers, language

Identity
verification

No, already
collected.

Compute providers already collect a
wide range of customer information.
Customers can potentially spoof much
of this data to try to avoid identification.

Billing-related technical in-
formation

e.g., hardware configuration
requested by a customer,
number of hours that hard-
ware resources are used

Workload
classification

Compute
accounting

No, already
collected.

Already collected by compute
providers for billing purposes. Highly
difficult or impossible for customers to
alter to avoid monitoring.

Cluster-level technical infor-
mation

e.g., power consumption, net-
work bandwidth utilization
between nodes

Workload
classification

Compute
accounting

No, already
collected.

Already collected by compute
providers for service health monitoring
and maintenance. Customers could
modify their workloads to avoid certain
forms of cluster-level verification,
likely with performance penalties.

Node-level technical informa-
tion

e.g., AI accelerator core uti-
lization, AI accelerator mem-
ory bandwidth utilization

Workload
classification

Compute
accounting

Potentially, already
collected.24

Possible to collect using existing tool-
ing, and collected by some compute
providers.25 Customers could modify
their workloads to avoid certain forms
of node-level verification, likely with
performance penalties.

Workload-level technical in-
formation

e.g., code, data, hyperparam-
eters

Workload
classification

Compute
accounting
Detailed
workload

verification

Yes, currently not
collected.

Compute providers cannot typically re-
tain or inspect this information (by de-
sign). Confidential computing tools
could potentially be developed to ver-
ify information in a privacy-preserving
manner.

Table 3: An overview of the categories of data attributes available to compute providers and how
they can be used for different verification activities.

Identity verification of this kind appears feasible, but we recommend that policymakers consider
several strong caveats. As described above, compute providers typically collect a range of information
relevant to verifying customer identities. This includes (AWS, 2024g; CoreWeave, 2022; FluidStack,
2022; Google Cloud, 2024c; Lambda Labs, 2022; Microsoft, 2024a):

22Based on our current understanding and insights gathered from interviews, and given publicly available
information.

23In this column, we collect information on whether each data attribute is already collected, and if not, how it
could be collected. We also list whether it might be possible for customers to falsify each data attribute in order
to avoid information being verified.

24While examining customer data is out-of-scope, collection and analysis of certain types of metadata could
risk exposing details of the customer’s data.

25See Weng et al. (2022) and Google (2024).
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• Personal information, such as legal names, user names, email addresses, phone numbers,
and government-issued identification documents

• Information about customer organizations and the people in those organizations

• Financial information, such as credit card and bank account information, and tax identifiers

• Service-related information, such as the locations from which users are accessing the service,
time zones, the type of device a user is using to access the service, the language used on
that device, web cookies describing sites previously visited, and IP addresses used when
accessing the service.

This equips compute providers with large amounts of useful information for verifying the identity
of customers seeking to access infrastructure sufficient to efficiently run frontier AI workloads.
Because such customers will by definition be few in number, best practices for identity verification
could be drawn from more involved identity verification activities such as those conducted in other
industries. One example is the “enhanced due diligence” process used in financial sectors for higher-
risk customers or transactions, which can involve commissioning intelligence reports on customers
or their “beneficial owners” (the entity that ultimately owns or controls the customer organization)
(Financial Action Task Force, 2003). These kinds of measures may be necessary to successfully
perform identity verification in situations where a well-resourced illicit actor is actively trying to
obfuscate their identity.

In performing identity verification, it is important for regulators and compute providers to bear in
mind potential trade-offs with user privacy and data privacy regulation in different jurisdictions.
It would likely be useful for identity verification requirements to be standardized across different
jurisdictions. We discuss these challenges in Sections 4.4 and 5.2.

3.3.2 Workload Classification

“Workload classification” describes a scenario where an infrastructure provider is attempting to
classify a workload into a particular category. We will consider, from a frontier AI governance
perspective, what these categories might be, and how they might be differentiated.

First, it is useful to know whether a workload relates broadly to AI. Frontier AI workloads will
generally all use AI accelerators, but not all workloads that use AI accelerators will necessarily be AI
workloads. For example, graphics and scientific computing workloads sometimes use AI accelerators.
However, these workload categories can likely be differentiated using observable properties of the
workload. Examples of such properties are outlined in Appendix B in the Appendix. Within the broad
category of AI workloads, there are several sub-categories of workload, corresponding to stages in
the AI model’s life cycle, that are useful to differentiate from a governance perspective:

• Design, in which researchers and engineers experiment with different model designs, algo-
rithms, and datasets.

• Training, in which a model learns from a large dataset. Typically known as “pre-training”
to distinguish from enhancement.

• Enhancement, in which a trained model is further refined using a smaller data set (e.g.,
fine-tuning), sometimes using techniques such as reinforcement learning.

• Deployment in which a trained model is used in an operational setting, e.g., to make new
predictions (“inference”).

Each of these categories can be distinguished based on scale, among other attributes. Given the large
scale of the frontier AI workloads we are interested in detecting and classifying, we can place a strong
initial filter on which specific workloads warrant attention, ignoring the vast majority of workloads
run on a compute provider’s infrastructure. As discussed by Sastry et al. (2024), the training stage,
where compute demands are especially high, is an especially practical stage to monitor.26

The simplest method of workload classification might be based purely on the hardware configuration
(in terms of types and numbers of devices) available to a customer. For example, in 2024, if a
customer has requested a hardware configuration involving tens of thousands of AI accelerators,

26See Section 3.C of Sastry et al. (2024).
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Figure 9: Simplified AI Lifecycle including training, enhancement (e.g., fine-tuning), and deployment
(i.e., inference). (Figure from Sastry et al. (2024).)

connected together using a high-bandwidth network fabric, it becomes much more likely they intend
to engage in large-scale training, relative to other customers. Combining this information with the
amount of time the hardware is being used can tell us whether it was possible for a customer to run
a particular workload (e.g., pre-training above a particular scale), which could provide grounds for
a more detailed investigation. These coarse methods are possible using data already available to
compute providers for billing purposes. See Section 3.3.3 below for more information on these kinds
of approaches.

More precise methods for frontier workload classification might involve manually defining some
technical characteristics of relevant workloads, or training a machine learning classifier using cluster-
and node-level technical information to predict whether a workload falls into a relevant category.
Compute providers could also collect declarations from customers about the workloads they are
running, and use that information as a reference point for classification. These approaches are based
on the assumption that different kinds of workloads will have characteristic and learnable features. As
an example, we expect frontier-scale training in 2024 will likely have several distinguishing features
relative to other possible workloads. These could include the number of accelerators used (tens of
thousands), the peak operation throughput utilization of accelerators over time (fairly constant), the
patterns of communication between and within nodes (following specific patterns corresponding
to different forms of parallelization), and limited outbound/inbound communication to external
networks, such as the Internet, during the training run. According to six interviews with commercial
compute providers, including both large and smaller providers, these kinds of cluster- and node-level
characteristics are often already collected and used to understand customer workloads to optimize
their services.27 Research released by Google, Microsoft, and Alibaba demonstrates some of the
ways this technical information is collected and analyzed for business purposes (Jeon et al., 2019;
Tirmazi et al., 2020; Weng et al., 2022). Some of this data has been released as public data sets that
can be used to develop workload classification techniques (Alibaba, 2024; Google, 2024).

Workload classification techniques using these kinds of data have been studied in different contexts.
(Tang et al., 2022) introduced the “MIT Supercloud Dataset,” containing node-level technical in-
formation for over 3,000 AI accelerator-based workloads. Workload classifiers trained on this data
have reached 95% accuracy at distinguishing AI workloads across ten different model architectures
(Weiss et al., 2022). Other research on workload classification for different kinds of high-performance
computing workloads has reached similar levels of accuracy (Banjongkan et al., 2018; Terai et al.,
2017), including classifiers trained only to use data on power draw (Copos & Peisert, 2020; Köhler
et al., 2021).

27Interviews conducted between October 2023 and February 2024
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However, there are several ways these findings may not be representative for frontier AI workload
classification in a production environment. First, the authors mostly generated labeled data by running
workloads themselves, which likely involved a level of standardization in software and datasets that
would be unrealistic for real-world conditions. Second, this research typically involved a small
number of different hardware configurations and scales, whereas these parameters will likely vary
further in production contexts. Lastly, even a 5% error rate may be prohibitively high in production,
given the potential consequences of reporting a false positive to a regulator.

Compute providers offering large-scale AI clusters are likely to have the expertise to address these
technical challenges. In doing so, we recommend that compute providers—in collaborative efforts
where possible—consider a range of technical approaches for classification, ranging from simple
manually defined thresholds through to machine-learning based classifiers. These methods could
also be combined with other useful data and processes, such as by soliciting customer declarations
on the intended use/purpose of a hardware configuration or workload, and by conducting follow-up
investigations in cases where classification confidence is low. Box 1 demonstrates what a workload
classification process combining these elements might look like.

Box 1: An example process for frontier AI workload classification.

1. The compute provider lists the specific set of hardware configurations and scales
they offer that are sufficient for efficient training of frontier AI workloads (i.e.,
within defined cost/time boundaries). Given that compute providers tend to spe-
cialize in particular hardware configurations (e.g., AI accelerator types and node
configurations), this number could be quite small.

2. The compute provider collects labeled cluster- and node-level data on workloads
simulated or run on each of these configurations. Compute providers offering similar
hardware configurations may benefit from coordinating to produce larger datasets.

3. The compute provider creates technical thresholds to define relevant workload
categories based on their identifying characteristics, and tests them on the collected
data. This could include training ML-based workload classifiers. It may be the case
that a single classification approach works well for a range of different hardware
configurations and/or scales, or that more specific classifiers are required for different
configurations.28

4. In operation, for any customer seeking access to or already using a relevant hardware
configuration, the compute provider could then:

a. Ensure they have performed adequate identity verification.
b. Collect declarations from the customer on the intended use of the hardware con-

figuration, and/or declarations on the nature of any sufficiently large workload
run on that configuration.

c. Validate these declarations by running automated classification on workloads
that use that configuration, and conduct follow-up analyses where useful, espe-
cially in cases where classification confidence is low.

The difficulty of classifying workloads increases if a compute customer is actively trying to disguise
the nature of their workload. This kind of obfuscation may become likely in cases where a customer
has a strong financial, criminal, or political incentive to avoid regulatory oversight. Such incentives
are likely to grow when frontier AI models become both more attractive for criminal activities and
more economically lucrative. Analogous practices can be observed in the finance sector, where
illicit actors have engaged in “structuring” (breaking up a single transaction into several smaller
transactions) to avoid automated transaction reporting from their bank to the regulator (Linn, 2010).
We discuss and list these challenges in Section 5.1.

28For an example of an approach for simulating workloads on large clusters, see Sliwko & Getov (2016).
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3.3.3 Compute Accounting

We introduce “compute accounting”: measurements and techniques to produce an estimation of the
amount of compute consumed by a customer running one or more workloads on a specific compute
cluster. These techniques are comparatively similar to the previous section on workload classification
(Section 3.3.2). However, rather than establishing the class of a workload, compute accounting aims
to determine its magnitude. Moreover, compute accounting is useful even when the workload is
not classified at all, as an estimate of the total amount of compute used by a given customer is an
upper bound for a single (unknown) workload. From a practical governance perspective, compute
accounting could be used as an input to workload classification, and/or as a standalone metric to
determine whether a particular workload has exceeded a compute-based reporting threshold.

The amount of compute used by a given workload is a useful metric from a governance perspective.
In the context of AI training, novel capabilities (and related risks) are likely to first emerge in models
that require large amounts of compute (Pilz et al., 2024; Sevilla et al., 2022). In the context of AI
inference, compute is correlated with the scale and processing speed of the deployment: how many
copies of the model are being run, and how fast the model is operating (the throughput, e.g., tokens
per second for LLMs). Insofar as the model is capable enough to potentially cause harm, these factors
could then be correlated with risk and the need for enhanced oversight (Appendix I of O’Brien et al.
(2023)).

More formally, the total computing power of a rented cluster and how long a customer has access to
it results in a quantity of available compute—a “compute budget.” The customer is then choosing
how to allocate that budget across different workloads. For example, a given set of AI accelerators
could be used for a single training run, multiple small training runs, or model deployment (Figure 10).
In cases where compute is being consumed by a customer (as opposed to hardware sitting idle), the
amount of compute consumed can be attributed to at least one workload. The addition of workload
classification allows fractions of that usage to be ascribed to workloads of particular types.

Scenario A

Scenario B

Scenario C

T i m e  /  C o m pu t e  Q ua n t i t y

Large Training Run

Small 
Training Run

Small 
Training Run

Fine-Tuning 
Experiment

Model 
Deployment

Fine-Tuning 
Experiment

Fine-Tuning 
Experiment Model Deployment

Figure 10: Three example scenarios of a set of AI accelerator nodes running different workloads
over time. Compute accounting establishes the amount of compute used over time, while workload
classification can differentiate between these three scenarios by mapping compute usage to specific
workloads.

We can estimate the compute budget via two different approaches:

1. Theoretical compute budget estimation: calculated using the assumed throughput (mea-
sured in OP/s) of the hardware potentially involved in the workload, and multiplying it by
the time the hardware is being used.
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2. Empirical compute budget estimation: calculated using actual measurements from the
hardware that can serve as more direct proxies for compute consumption. For example,
aggregating AI accelerator core utilization and time-in-use data across all AI accelerators
involved in a workload, and multiplying by the peak capacity of each core.

Theoretical compute is a derivative of empirical compute, useful for establishing an estimate in
circumstances where empirical measurements are not available. As exact circumstances and configu-
rations differ between compute providers, not all attributes of both theoretical and empirical compute
are likely to be observable. However, in practice, both kinds could be used to inform an overall
estimate of compute usage for a particular instance of running a workload (Figure 11).
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Low Level 
Measurements
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Figure 11: A spectrum of possible compute usage metrics for AI workload analysis, from low-level
measurements, such as on-chip calculations, to more high-level measurements, such as the hardware
available to a customer. Each of these metrics can be synergistically combined to enhance the
accuracy and sensitivity of workload classification and compute accounting.

Regardless of whether the approach is theoretical or empirical, it will be important for compute
providers to estimate both throughput (OP/s) and total quantity of operations (OP). This provides
crucial information to detect cases where a customer is evading a reportable compute threshold by
utilizing multiple compute providers or accounts to sequentially perform partial training of a model.
In this case, the throughput available to the customer is necessary to identify that a rate of compute
usage corresponding to a reportable threshold has been reached, even if the reportable threshold itself
has not. We discuss this in 5.1.

Measuring Theoretical Compute Budget — Theoretical approaches measure the potential for a
certain amount of compute to be used for one or more workloads within a given time frame. This
is easier to measure than empirical compute, and in the simplest form is equivalent to hardware
resources a customer has been allocated to access within the cluster. For any given compute provider,
the number of customers with access to sufficient theoretical compute to train a frontier model will be
small.29 This makes theoretical compute a useful measure for determining which specific customers
are relevant for a frontier AI regulatory regime. This can be calculated using data already available to
compute providers for billing purposes (Table 3). Relevant data for measurement of compute are:

29For example, to meet the AI Executive Order’s reporting requirement of 1026 operations for a training run, a
customer will need access to around 60,000 cutting-edge AI accelerators (Nvidia H100) for 90 days, assuming a
utilization of 34%.
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• Node assignment: Compute providers can bill customers for on-demand nodes (a full or
partial node) at a granularity ranging from seconds to hours (AWS, 2024e), or reserved
nodes ranging from days to months (AWS, 2024f). Theoretically, the used compute budget
can be calculated using this information by summing the theoretical peak performance of the
AI accelerators in each node, multiplying it by the time the node is available to the customer,
and the assumed average utilization of the AI accelerators.30

• Data ingress/egress: Data into and out of the cluster is metered and sometimes billed
(Google Cloud, 2024a; Microsoft Azure, 2024b; Pal et al., 2021). The communication
of nodes within the cluster to endpoints outside the cluster, as well as the amount of data
transferred and time when communication occurs, can inform whether nodes outside the
cluster participated in a training run or deployment.

The exact procedures to allocate, measure, and invoice customer usage for billing purposes are
not publicly available for any major provider. However, every provider must have internal control
systems and diagnostics to record this information accurately, as well as status reporting and other
telemetry to maintain the health of their clusters (such as the state of individual machines and network
switches). While billing information provides a widely-measured baseline for customer compute
usage, intra-cluster network information such as the network topology can provide greater detail.
Specifically, knowledge of whether two nodes are capable of communicating within a cluster informs
whether they may participate in running the same parallel workload.

Theoretical compute, while relatively simple to calculate in most cases, is useful primarily to establish
an upper limit on the total compute budget of a customer. To map compute usage onto a particular
workload requires additional information at the cluster or node level, as previously covered in
Section 3.3.2.

Measuring empirical compute budget — Measurements of empirical compute usage involve obser-
vations of a cluster’s hardware-level characteristics, often measurements of the node itself (perhaps
from a hypervisor or other privileged software) or inter-node communication fabric. Empirical com-
pute, in contrast to theoretical, can provide a highly precise and accurate accounting of the amount
of compute, though some limitations exist. We consider that two categories of measuring empirical
compute exist: operations and data transfer. Operations refers to the mathematical calculations
performed as part of a workload (most frequently multiplication and addition for contemporary AI
workloads). Data transfer refers to the movement of the data necessary to perform those calculations:
network links from node-to-node, or chip-to-chip within a node or loaded from an AI accelerator’s
memory.

While these properties are essentially metadata, compute providers would need to detail collection
and observation of this within their terms of service with very clear guidelines about how the data
will be collected, stored, and used. While strict internal policies are necessary to ensure the integrity
of such metadata, this kind of usage policy would likely not require any significant deviation from
existing policies for sensitive customer data handling, or deviation from the kinds of data that are
already often collected (AWS, 2024g; CoreWeave, 2022; FluidStack, 2022; Google Cloud, 2024c;
Lambda Labs, 2022; Microsoft, 2024a).

Within a given node, opportunities to measure empirical compute include:

• Operations performed on AI accelerators: Individual chips contain performance counters
to measure information such as the number of instructions executed (Wikipedia contributors,
2023). A vendor tool may be required to access this information (NVIDIA, 2024b).

• Data flow to/from AI accelerator’s memory: The rate at which data is written to or read
from the AI accelerator’s memory can be observed over time, allowing measurement of
throughput and quantity, and can inform an estimation of the total number of operations
performed (National Energy Research Scientific Computing, 2024; Williams et al., 2008).

• Data traffic between accelerators and other nodes: Node-to-node and chip-to-chip
communication is an indicator of participating in the same workload, even if the workload
itself cannot be classified (Merritt, 2023; NVIDIA, 2024a; Shoeybi et al., 2020).

30“Utilization” in this context refers to the usage as a proportion of the node’s theoretical peak computational
performance.
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Even without privileged software access to the node, other measurements of cluster operations are
useful to inform an estimate of empirical compute:

• Power consumption: In cases where precise chip utilization is not observable, measure-
ments of power consumption (of a node or individual AI accelerators within a node) can
help inform an estimate. The amount of power consumed by each node is considerably
higher when a node (or even an individual AI accelerator (NVIDIA, 2024c)) executes a
workload compared to idle. However, power consumption does not simply scale linearly
with performance (Patel et al., 2023), though specific calibration for a device may enable im-
proved estimation. Power consumption will typically be a way of measuring both operations
and data transfer, as both these activities consume energy within a node.

• Data traffic between nodes: Granular information such as the number of data sent to and
from the node, the source and destination of this data, and the timing with which they are
sent can inform how multiple nodes are cooperatively executing the same workload.

While many of these measurements alone provide limited insight, combining measurements can
provide more insight into the compute usage of a particular workload (Figure 11). Empirical
measurements form an upper bound for compute usage, as not every operation can be known to have
contributed to a workload.

3.3.4 Detailed Workload Verification

To verify compliance with regulations on the development or deployment of frontier AI systems, it
may be useful for a compute provider to validate more fine-grained features of a workload, such as
whether a particular training dataset was used, the model architecture, or whether a particular model
evaluation was run. We call such activities “detailed workload verification.” This form of verification
differs from workload classification in that it will almost always require knowing certain properties
of the code and/or data used by the customer.

One undesirable form of workload verification would simply require compute providers to have direct
access to customer code and data. However, this level of access is not acceptable, as compute providers
will not access customer data without permission unless required to maintain the health of their
cluster or legally compelled (see AWS (2024b), and other terms of services from compute providers).
Internal risk management processes, such as auditing access to customer data by employees, typically
govern details such as when access occurred, by whom, and whether it was authorized.

However, using privacy-preserving technologies built into data center hardware, it may become
possible for a compute provider, in collaboration with a customer, to verify particular properties of a
workload without observing any other information—only the required verification result needs to
be shared (Aarne et al., 2024). As one example, many modern CPUs and AI accelerators, such as
NVIDIA’s H100, and data center CPUs from AMD and Intel, come equipped with a “trusted execution
environment” (TEE), allowing the AI accelerator/CPU’s customer to assert the confidentiality and
integrity of code/data, while exposing only the code/data they choose to, and having full control over
who they expose it to (Figure 12). Techniques that leverage a TEE in this way are often known as
“confidential computing.” Compute providers are increasingly making these features available to
customers (AWS, 2024d; Microsoft, 2024b; 2023).

Using confidential computing techniques, customers may be able to provably verify particular
governance-relevant properties of their workloads to their compute provider or directly to a regulator.
For example, a customer may wish to demonstrate that they ran a particular model evaluation, obtained
a particular result on a model evaluation, or did (not) use a particular dataset during training. However,
these techniques have yet to be fully validated and implemented in production contexts. Several
organizations are actively researching and developing software for using confidential computing to
allow privacy-preserving auditing of models (Mithril Security, 2024b; OpenMined, 2023; 2024).
There has also been some work on expanding these techniques to allow privacy-preserving auditing
of training workloads (e.g., the dataset used, or quantity of compute consumed), though this area
is less well-explored (Choi et al., 2023; Mithril Security, 2024a).31 If regulatory requirements on
compute providers end up requiring them to validate more fine-grained properties of workloads, these

31Choi et al. (2023) propose a method for verifying training data, but it requires sharing of sensitive data with
the verifier. Making the scheme fully privacy-preserving is discussed but left for future work by the authors.
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Figure 12: Using confidential computing techniques allows an “attester” (customer) to share high-
level information about a workload with a “verifier” (e.g., a compute provider or a regulator) such
that the verifier can trust the information, without the attester sharing any additional code or data.
(Adapted from Aarne et al. (2024).)

kinds of methods could be used to achieve this in a way that preserves customer confidentiality and
privacy. In the meanwhile, we encourage compute providers and developers to explore and develop
these techniques to ensure they can be implemented without meaningful performance penalties, and
while preserving other aspects of customer experience and confidentiality.

4 Constructing an Oversight Scheme

Incorporating roles for compute providers in security, record keeping, verification, and enforcement,
accompanied by appropriate reporting, could form the basis of an effective compute oversight scheme.
Such a scheme could enable greater visibility of AI development and help ensure the adoption of
appropriate safeguards. There is an opportunity to build on and complement existing policies around
compute governance occurring around the globe.

This section looks at the US as a case study. We examine the Biden Administration’s 2023 Executive
Order 14110 on Safe, Secure, and Trustworthy AI (“the AI Executive Order”) (The White House,
2023b): outlining the ways in which it progresses record keeping requirements for foreign customers
and signals a need for greater verification and enforcement capabilities. We then explore what
additional steps might be required to enlist compute providers in administering a more comprehensive
compute oversight scheme, and where further research is needed. We highlight the importance of
internationalizing a compute oversight scheme, and outline some of the key challenges that need
further attention and analysis before this proposal is ready for adoption.

Unlike proposed US foreign customer identification rules for IaaS providers (Federal Register, 2024),
we focus on oversight of only frontier AI model development and deployment, rather than all compute
use. While we explore these issues in the US context, similar analyses could also be done for other
jurisdictions, like the EU, and in the international context. We encourage further policy analysis in
this space.
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Figure 2: Additional measures, implemented by the Department of Commerce, would strengthen the
intermediary role of compute providers and enable a compute oversight scheme.

4.1 Case Study: Compute Providers’ Intermediary Role in the US

4.1.1 Record Keeping and Reporting in the AI Executive Order

The AI Executive Order acknowledges the importance of compute providers in AI regulation, and
begins to impose record keeping and reporting requirements. First, under the authority of the
Defense Production Act (DPA), it requires firms owning or developing clusters capable of collectively
providing more than 1020 OP/s with more than 100 Gbit/s networking bandwidth32 to report its
existence and location. Once implemented, this measure would provide the US Government with
visibility of the most significant compute infrastructure in the US. While the high reporting threshold
will not capture all compute clusters capable of training frontier AI, it will nevertheless be useful in
identifying relevant industry stakeholders that would play a role in frontier AI governance.

Additionally, leveraging the powers of the International Emergency Economic Powers Act (IEEPA),
the AI Executive Order requires that compute providers identify and report to the Department of
Commerce when a foreign person uses their services to train a frontier AI model.33 The Department
of Commerce has proposed rules to implement this that would require US compute providers (and
their foreign resellers) to maintain Customer Identification Programs.34

32Threshold as stipulated by the AI Executive Order. Note it is subject to updates.
33In this case, models trained on with more than 1026 operations and occurring on frontier infrastructure.
34The proposed rules also require US IaaS providers and their foreign resellers to verify the identities of all

foreign customers. This broader measure has come under criticism for being ineffective in addressing cyber
threats, giving rise to privacy issues, and impacting the competitiveness of US compute provision (National
Security Telecommunications Advisory Committee, 2023). This paper does not engage in analysis of this broader
measure, and instead focuses on the subsection of compute for frontier AI. As outlined in the introduction, this
narrower focus only captures a small number of AI firms and compute providers, which mitigates much of the
concern around regulatory burden (see discussion in Section 1.4.
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4.1.2 Potential for Verification Capacity

The AI Executive Order offers the potential for compute providers to exercise verification capacities.
In a direct sense, the proposed rules would require US compute providers to take a risk-based
approach to verifying the identities of foreign customers and their beneficial owners, whether the
customer is running a training workload with particular technical properties, and reporting large
training runs by foreign customers to the Department of Commerce (Federal Register, 2024). In
an indirect sense, the AI Executive Order introduces a range of requirements for AI developers,
which will eventually require verification capacities to be effective. For example, AI developers are
required to report on the training of large models, the cybersecurity protections taken to secure model
weights, and the results from red-team testing according to guidelines developed by the National
Institute of Standards and Technology (NIST). While the AI Executive Order does not address how
these measures will be verified, compute providers could become governments’ natural partners for
checking compliance.

The AI Executive Order and the proposed rules for IaaS providers give compute providers a role
in enforcing regulations—enabling the Government to require the compute provider to prohibit or
limit access to an account or an entire jurisdiction—but only when it involves foreign customers with
demonstrated patterns of using US IaaS for malicious cyber-enabled activity. There is currently no
explicit authority that requires compute providers to stop a foreign customer training a frontier model
that might be used maliciously in the future. The existing authorities also would not apply in cases
where risks arise from models being developed domestically.

4.1.3 Future Additions

The AI Executive Order lays the groundwork for an institutional structure that could support a
compute oversight scheme. Importantly, it begins to build greater AI understanding and regulatory
capacity within the US government, establishes clearer government accountabilities for frontier AI
governance, and establishes foundational elements of a broader regulatory framework. Yet it falls
short of a comprehensive oversight scheme. Additional steps are required to effectively identify
and manage emerging risks and enable proportionate oversight of frontier AI development. We
outline potential measures to achieve this, including ensuring proportionate information security
practices, expanding and streamlining record keeping requirements, enhancing verification roles, and
establishing enforcement capabilities.

Ensuring proportionate information security practices — Given the potential risks associated
with frontier AI, further work may be warranted to ensure cybersecurity standards are proportionate
to risk. Because compute providers are custodians of sensitive data and IP for a broad range of clients,
actions they take to improve security will benefit all their AI developer customers and their respective
users.35 Further cooperation between industry and government (including bodies like NIST and
CISA) is required to consider what cybersecurity standards are most appropriate for entities that
hold sensitive frontier AI-related IP. This could be informed by the risk profiles underpinning the
cybersecurity standards and practices that are currently being developed by leading AI companies, as
per their voluntary White House commitments to manage AI risks (The White House, 2023c).

Expanding and streamlining record keeping — While the proposed rules require US compute
providers to keep records on foreign AI developers, significant AI-related risks may also arise from
domestic AI development. This may make it appropriate to expand the role of compute providers to
also undertake KYC on domestic developers of frontier AI to enable a more comprehensive oversight
scheme (Smith, 2023). Under the AI Executive Order, domestic AI developers are themselves
accountable for reporting their own frontier training runs to the Department of Commerce. Using the
compute provider to collect information that could then be used to validate these processes would
help improve their effectiveness and ensure compliance. In this way, KYC could be implemented as
a cohesive scheme, drawing on lessons from the financial sector (Egan & Heim, 2023).

In addition to using training compute thresholds, other measures should be employed to create a
more precise risk-management system. The current 1026 operations threshold minimizes regulations
on existing systems while capturing next-generation models that may pose significant dual-use
risks. However, below-threshold compute could also be relevant in identifying problematic trends

35Note, however, that strong cyber security at the infrastructure level alone is insufficient. AI firms will still
need to implement and maintain strong cyber security practices on their own systems (Section 3.1).
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(e.g., from entities in particular geographic regions) and entities trying to break up workloads over
multiple compute providers (Heim & Egan, 2023). Furthermore, the threshold should be constantly
re-evaluated as frontier AI evolves and algorithmic innovations reduce the cost of training powerful
systems and if our understanding of how to predict risks from compute in particular systems grows
(Pilz et al., 2024). On the training side, indicators like training data (similar to the biological sequence
data criterion referenced in the AI Executive Order), the architecture of the AI model, or the way
training is conducted could all be useful proxies for identifying risk levels from new AI systems.
On the deployment side, which does not currently fall under the purview of the AI Executive Order,
factors like the use of customer data (e.g., voice or images), the scale of deployment, the level of
access to the outside world (e.g., via the internet or physical effectors), and the ability to act with
limited direct supervision could be used to set a range of regulatory thresholds (Shavit et al., 2023).
Developing more nuanced thresholds, beyond blunt compute capacity and usage, will require further
research and collaboration between government, compute providers, AI developers, and broader civil
society.

Enhancing verification roles — There is an opportunity to leverage compute providers’ verification
capabilities to help ensure both foreign and domestic AI developers are complying with AI safety
standards and requirements. The AI Executive Order requires AI developers to report the total
amount of training compute and whether biological sequence data was used to train their frontier
models, as well as the outcomes of safety testing. However, there are presently no verification
methods specified for these requirements. The ability of compute providers to capture insights
from the metrics described in Section 3 could enable verification to be performed while minimizing
privacy tradeoffs. For example, rather than reporting all metrics to the US government, compute
providers could instead only report when they have reasonable grounds to suspect a violation of
regulations or standards has occurred. Verification mechanisms will need to be resilient against
evasion and exploitation. For example, privacy-preserving information sharing between compute
providers could be used to help identify and manage attempts to break training runs down into smaller
segments, or to obfuscate compute utilization patterns. As regulatory frameworks develop, there
may be an opportunity for compute providers to play a role in advancing both responsible training
requirements for frontier model developers, including notification and use of secure infrastructure,
and pre-deployment safeguards, for example by requiring frontier model providers to demonstrate
they have government approvals prior to placing a model on the market. Such approvals could be
made contingent on the evaluation of highly capable models to a specified standard (O’Brien et al.,
2023).

Privacy protections could also be aided by the application of confidential computing standards,
which technically limit the ability of compute providers to ‘look in’ at sensitive data (IBM, 2024;
OpenMined, 2023). Further work is required to explore the possibilities of data verification in a
privacy-preserving way, particularly mechanisms to identify when a developer is using biological
sequence data.

Establishing enforcement capabilities — To effectively leverage compute providers in an inter-
mediary enforcement role, the US government would need to implement additional authorities and
requirements for them to effectively halt training runs or deployment in response to violations of
set controls and safety standards. Such authority could be linked to a comprehensive regulatory
scheme with components such as developer licenses, training risk assessments, pre-deployment risk
assessments, and the monitoring of criminal activity through models after deployment (Anderljung
et al., 2023a), supplemented by a process for appeal and corrective action. To draw parallels from
other industries, financial and aerospace regulators use a range of factors, like customer risk profiles,
track records, and company practices, to evaluate the level of oversight necessary. AI developers
with a pattern of risky behavior may warrant stricter oversight in order to purchase computing power.
The ability to deploy an AI model at a large scale may also be linked to model licensing and proper
privacy and safety precautions on the part of the compute customer in the future.

Once appropriate authorities have been established, there are several ways compute providers could
help enforce rules. It could be desirable to be able to prevent or pause runs if the total amount of
compute used exceeds the limit permitted by present approvals, if deployed models are actively
causing harm, or if the developer is on the Entity List. Compute providers already have the ability to
ration or cut off compute access to their customers. Therefore, key work that will need to be done
here includes:
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1. establishing formal rules for when AI developers can and cannot access compute at a
particular scale,

2. creating formal channels of communication between compute providers and regulators, and

3. clearly establishing respective roles and authorities between government and industry.

4.2 Regulating the Compute Providers Themselves

For compute providers to effectively contribute to AI regulation downstream, they themselves also
need to be subject to appropriate oversight and compliance measures. They are both intermediaries
and agents: they act as pass-throughs that offer computing power (in the form of hardware, often
acquired from other firms) to AI developers, and they make autonomous choices on pricing, select
customers, and provide differentiated services.

The AI Executive Order requires that compute providers declare the existence and location of
large-scale compute clusters, and the total amount of computing power available in each cluster.
Ad hoc investigations and spot checks would help ensure compute providers are incentivized to
prioritize this obligation. A chip registry, where policymakers mandate the reporting of the sale
and transfer of cutting-edge AI chips, could also help ensure compliance (Fist et al., 2023; Fist &
Grunewald, 2023; Sastry et al., 2024). But the need to verify compute provider compliance would
be significantly heightened should they take up the key role of screening AI developers. Ongoing
training and government and industry engagement could help ensure expectations are clear and
requirements are met in a way that minimizes regulatory burden. Additional government capacity
would likely be required to ensure appropriate spot checks and investigations can be carried out.
To help ensure compute providers play an appropriate role in providing secure infrastructure and
advancing verification and enforcement, there may also be a role for the licensing of compute
providers themselves, similar to the way in which operators of critical infrastructure are licensed in
other domains (Australian DITRDCA, 2024; California Energy Commission, 2024; OFWAT, 2024).
Ensuring that government-established regulations are upheld and not tampered with will be key.

In cases where the compute provider and AI developer are the same firm or linked by a close
partnership, additional steps should be considered. These arrangements are common for many leading
AI companies, which either build AI data centers for their own products, for example, Google, or
maintain close financial ties with their compute providers, like OpenAI with Microsoft and Anthropic
with Amazon. The strength of these ties has prompted recent antitrust concerns: in January 2024,
the US Federal Trade Commission began an inquiry into these partnerships (Ward & Hu, 2024). In
such cases, there are unusually strong incentives to collude on false reporting, as rapid progress in AI
development is in both entities’ financial interests. This warrants additional external scrutiny and
reporting. A whistleblower scheme could assist in identifying and addressing noncompliance, but in
the longer term, prudential regulations may be needed to create an accountable compute ecosystem
and ensure that providers are fit for acting as regulatory pass-throughs. Compliance with these
regulations could be linked to maintaining operating licenses or accessing cutting-edge AI chips.
These rules should ensure sufficient independence between compute providers and their customers,
and that advanced AI and compute capabilities are safeguarded and accessed in an equitable manner.
Steps to limit the partnerships that create the strongest incentives for collusion, including via antitrust
law, could also help ensure proper oversight. In many industries, there are restrictions on how platform
providers may operate on their own platforms, as such operations can involve anti-competitive market
practices; a similar approach may mitigate unfair practices in the cloud computing market.

4.3 Domestic Government Capacity

Given the strong public interest in managing the risks of frontier AI, a robust government involvement
will be key to the success of an oversight scheme (Anderljung et al., 2023a). Building on existing
efforts, the US could establish a centralized authority within the Department of Commerce responsible
for AI risk management and engagement with compute providers and AI developers. Locating both
industry opportunity and risk management within the same department, alongside other AI-relevant
agencies like NIST, will help enable a holistic, proportionate approach to frontier AI controls. It
could also support alignment with the Department’s Bureau of Industry and Security’s (BIS) work
on compute hardware controls, which leverages channels of engagement with similar stakeholders.
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This authority should work closely with industry, researchers, and other government stakeholders to
ensure a holistic approach to AI governance.

Additional regulatory and legislative authority will likely be required. The IEEPA provides the US
government with broad abilities to control transactions with foreign persons in circumstances where
the President declares a National Emergency (Congressional Research Service, 2024). This could
provide the power for scrutiny and enforcement against foreign persons accessing US compute, but
the requirement to maintain a constant state of ‘national emergency’ for these rules to apply could be
criticized as government overreach (Boyle & Lau, 2021). The government is also limited in its ability
to effectively utilize compute providers as a node for domestic oversight. While the DPA allows the
government to require information from companies to undergo industrial base assessments, this falls
short of establishing ongoing channels of information sharing and verification, and there are currently
no clear mechanisms for checking compliance. The development of new legislation should involve
thorough consultation with industry and affected stakeholders, as well as international counterparts.

4.4 International Coordination

A harmonized international approach will be essential for the success of a comprehensive compute
oversight scheme: both to manage complex cross-jurisdictional oversight and privacy issues, and to
minimize the risks of customers and businesses relocating to other jurisdictions to avoid regulations.
International standards that preserve privacy and confidentiality should be explored as key components
of the solution.

Cross-jurisdictional oversight issues — Existing cross-jurisdictional data, privacy, and oversight
issues associated with compute providers with a global presence will be amplified in the context of AI
compute oversight. Many large compute providers employ globally distributed data centers to enable
low-latency international service provision and resilience to local disruptions. For example, while
headquartered in the US, major compute providers like Microsoft and AWS have data centers spread
across many regions and jurisdictions (AWS, 2024c). However, this distributed architecture can
result in contradictory local and domiciled regulatory requirements. This has been evident in the law
enforcement context, with the US enacting the Clarifying Lawful Overseas Use of Data (CLOUD)
Act in 2018 in response to impositions on its ability to access data from US compute providers when
that data was stored in a foreign data center (Rep. Collins, 2018).

In the context of AI compute providers, cross-jurisdictional oversight is of particular sensitivity,
due to both the commercial value of frontier AI model weights, as well as the strategic significance
of AI. With both the US and China actively competing to be the world leader in AI (The White
House, 2023b), there would be strong incentives for states to misuse any access they may attain
through a compute provider oversight regime. For example, China’s 2017 National Intelligence Law
stipulates that PRC citizens and corporations must assist with China’s national intelligence efforts,
if directed (China Law Translate, 2017), and in 2022, the US government used its powers under
the Foreign Intelligence Surveillance Act to order Microsoft to give it access to between 42,000
and 43,996 accounts (Microsoft, 2022). This creates a low-trust environment that could diminish
the competitiveness of compute providers in countries that have oversight regimes and diminish
international support for such a scheme.

Privacy-preserving standards — To support international cooperation on mutually beneficial AI
safety oversight, compute providers could play a leading role in working with governments to establish
privacy-protecting compute provision norms and standards. The need to balance private interests
with state interests, and security with privacy, is not new. In 2017, Microsoft proposed making major
technology companies akin to a ‘Digital Switzerland’ – refusing to side with governments in any
cyberattack and instead upholding a neutral and trusted environment (Smith, 2017). However, in
2022, major technology companies took an active stance in response to Russia’s invasion of Ukraine:
Microsoft played an active role in defending Ukrainian government systems and networks (Farrell &
Newman, 2023) and SpaceX immediately provided Ukraine with free access to its Starlink satellite
networks (Jones et al., 2023). This has demonstrated a growing willingness of private technology
companies to play an active role in geopolitics and this shift showcases the limitations of voluntary
rules and norms (Farrell & Newman, 2023). In this environment, technical solutions could be key to
establishing the trust and reliability necessary for customers to trust internationally-owned compute
providers in the context of an oversight scheme. In particular, confidential computing techniques
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(Confidential Computing Consortium, 2022) could ensure compute providers cannot be compelled by
governments to hand over sensitive data (Section 3.3.4).

Notwithstanding privacy-preserving standards to protect sensitive customer data, requirements for
compute providers to report on customers in foreign jurisdictions will raise significant interjurisdic-
tional privacy challenges. Even between close partners like the US and EU, privacy protections have
already come into conflict with free data flows across jurisdictions. For example, the EU-US Privacy
Shield (European Commission, 2016) and its predecessor, the International Safe Harbor Privacy
Principles (EU Agency for Cybersecurity, 2000), designed to allow data sharing between the EU and
US, were both overturned by the European Court of Justice because of their failure to appropriately
uphold EU citizens’ privacy rights (BBC, 2020). Their replacement, the 2022 EU-US Data Privacy
Agreement, is also under scrutiny, with privacy groups announcing their intention to contest it in
court (Kim, 2023). Unilateral US action to require reporting on foreign compute customers will likely
evoke similar privacy challenges that could inhibit US compute providers’ abilities to serve global
customers. To manage privacy issues with close allies, the US could develop tailored agreements that
enable its oversight requirements to be met through compute providers reporting to the government
of the allied country within which their customer is domiciled. This could be made contingent on
some level of information exchange between the US and partner government. It could also serve
to incentivize uptake of a consistent scheme amongst like-minded countries. We encourage further
research to explore these issues in more depth. Ultimately, to be successful, a comprehensive compute
oversight scheme will need to incorporate and gain a multilateral agreement for privacy protections
that balance privacy and national security.

Consistent international approaches — Unilateral action by any one country—even those with a
significant IaaS market share like the US—also risks incentivizing compute providers and customers
to shift to lower regulatory environments. This could erode the market share of jurisdictions with
greater oversight, diminishing the ability of governments to oversee and address emerging risks (Egan
& Heim, 2023). The already broad geographic spread of major compute providers’ data centers, and
the ability to access them remotely, could potentially enable the global compute market to be more
easily restructured. Unilateral action would also push malicious actors and high-risk projects into
jurisdictions with lower scrutiny, thereby undermining efforts to increase AI safety. Achieving the
greatest consistency possible across international jurisdictions will be key to ensuring that efforts to
increase oversight are effective and robust to evasion.

Ultimately, given the global nature of the compute industry, some form of international agreement
will be needed for monitoring and verification frameworks to be durable. International compute
oversight coordination could be developed in a similar form to the Financial Action Task Force, which
currently works to achieve international consistency in the application of anti-money laundering
and counter-terrorism financing (AML/CTF) safeguards and regulations (Financial Action Task
Force, 2024b). A similar body for compute oversight could facilitate information sharing and help
align regulatory approaches and enforcement between international jurisdictions (Egan & Heim,
2023). Yet, while a majority of jurisdictions have strong shared incentives to combat organized
crime and terrorism financing, there is a risk of differing incentives in the compute oversight context.
Some states, particularly those skeptical of AI-related risks, may actively promote lower regulatory
environments in an attempt to attract economic activity and investment – similar to how Ireland has
used low corporate tax rates to successfully attract multinational corporations to be domiciled there
(Alderman, 2021). Initiatives seeking to build a shared understanding of AI-related risks, like the
2023 UK Safety Summit (UK Government, 2024), will continue to be important for strengthening
alignment on compute issues. Many countries, for example, India, UK, and Japan, are also exploring
options to build greater sovereign compute capacity (Government of India, 2023; Nagao, 2023;
UK Research and Innovation, 2023). This increasing self-reliance could lower interest in common
international approaches that might impact national goals. Ensuring international buy-in to a compute
oversight scheme would therefore require substantial diplomatic engagement alongside broader
economic incentives.

International compute oversight could be advanced through a “club approach” (Trager et al., 2023)
that predicates access to cutting-edge chips on adherence to the scheme. As the US, in partnership with
its allies, currently has a chokehold on the manufacturing of the advanced chips needed for frontier AI
compute (Allen et al., 2023), it could restrict exports to jurisdictions that are unwilling to implement
appropriate oversight measures. Just as unimpeded access to the US banking system is conditioned
on a jurisdiction’s compliance with FATF standards and regulations (Farrell & Newman, 2023;
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Financial Action Task Force, 2024a), so too could access to advanced AI chips require adherence
with established compute oversight standards (Sastry et al., 2024). There would be significant risks
with this approach that require further analysis. For example, the club approach could significantly
impact the US semiconductor industry and diminish US technology leadership. Its success is also
predicated on the US and aligned partners maintaining the lead in advanced chip hardware. But
if carefully implemented with enough international consultation and engagement, it could provide
incentives for a broader range of countries to opt into the scheme.

Even in the context of narrower oversight clubs, there is a benefit in supporting global standards
on how compute provider governance in general can support AI oversight and regulation. A key
challenge will be supporting cooperation between geostrategic rivals like the US and China, as the
strategic significance and dual-use capabilities of AI incentivize strong competition. However, the
foundation for increased cooperation is already being established: both the US and China attended
the 2023 AI Safety Summit and signed the Bletchley Declaration foreshadowing greater cooperation
on safety issues (Prime Minister’s Office et al., 2023), and the US and China have also bilaterally
agreed to work together on mitigating AI safety risks (Murgia, 2024).

International cooperation could be further strengthened by centering compute governance issues in G7
and G20 discussions – bringing together major economic players to agree upon shared priorities in this
space and building on existing agreements to cooperate on AI governance (The White House, 2023d).
Engagement with large regional bodies like the Indo-Pacific Economic Forum, the Association of
Southeast Asian Nations (ASEAN), and the Africa Union (AU), could encourage buy-in for compute
oversight harmonization. Working with global and regional banks may also help unlock options to
link involvement with funding and investment.

The details of an international harmonization scheme require further research, consultation, and
analysis. Further work is needed on issues of verification and enforcement between countries.
Nevertheless, we encourage policymakers to give greater consideration to the need for cooperative
compute provider governance in international discussions, as a first step in working toward a mutually
beneficial scheme.

5 Key Challenges

While certain technical and institutional capabilities for conducting infrastructure governance already
exist and could be employed, many areas still require further research to ensure robustness and
scalability. Furthermore, as compute becomes an increasingly important resource in the global
economy, regulators will need to make sure that access to compute is equitable, competitive, and
privacy- and confidentiality-protected. Regulation also needs to strike the right balance with public
safety as AI capabilities develop, ideally with differentiated regulatory levers that enable specific and
nuanced policies. Below, we present some key technical and governance challenges that should be
explored in the near term. The general challenges and considerations of using compute as a policy
lever are discussed in Sastry et al. (2024) and are applicable here.

5.1 Technical Challenges

Variation in workload signatures due to changes in algorithms and hardware at the frontier.
Certain signatures (e.g., network bandwidth utilization, AI accelerator core utilization) could be used
to classify customer workloads. However, these signatures depend on the model architecture and
training algorithm used to train frontier models, which will likely change over time (Rabinovitsj,
2023).36 Additionally, algorithmic progress within one type of model (e.g., utilizing AI accelerators
more efficiently) would also change aspects of this signature. In order to ensure that infrastructure
governance measures are effective, regulators and compute providers need to be kept aware of how the
state-of-the-art algorithms and hardware are changing; classification techniques need to be updated
over time to track these advancements.

Methods for workload classification that are robust to adversarial gaming.
In addition to this natural variation in workload signatures, adversarial actors may attempt to circum-

36For example, techniques to reduce the memory footprint of training are an active area of research (e.g.,
(Dettmers et al., 2022)).
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vent detection by intentionally changing the computational pattern37 of their workload.38 Compute
providers will have to develop classification methods that are robust to deliberate obfuscation and
adopt red-teaming techniques to check against these attacks. These changes could be much smaller
and more unpredictable than the natural variation of algorithms, so these gaming techniques need to
be anticipated prior to deploying the classification scheme.

Preventing evasion by structuring training runs across multiple data centers or compute
providers.
As with money laundering techniques observed in the financial industry, malicious customers may
split their workloads (e.g., training runs) across multiple data centers or compute providers to
evade regulations (a practice described as “structuring” in the finance industry (Sanction Scanner,
2024)). Regulators and compute providers will have to develop and constantly update technical and
governance methods to prevent evasion. Over time, techniques for avoiding detection will evolve, as
will more sophisticated approaches to detection. This should become an active and resourced area of
technical governance research.

Detecting training runs distributed across the data centers of a single provider is relatively straight-
forward due to the provider’s consolidated insight into infrastructure and relevant customer metrics.
However, when workloads are distributed across multiple providers, compute providers face signifi-
cant challenges in consolidating data for analysis. Yet, in practice, the number of providers capable
of delivering the requisite level of compute for high-risk models is limited (Richter, 2024). This
issue can be addressed by a technical framework that facilitates the secure and privacy-preserving
information exchange between compute providers—being mindful of the commercial sensitivities
and potential antitrust implications associated with sharing details about training runs and other client
data.

Moreover, the strategic implementation of a compute threshold (Pistillo et al., forthcoming) could
serve as a deterrent against “structured training” practices. Next-generation AI models generally
necessitate an order of magnitude more training compute than their predecessors to achieve mean-
ingful advancements in performance.39 A compute threshold set slightly above the current models,
for example, the one used in the AI Executive Order, reflects the reality that future, more advanced
models will not just require marginal incremental compute increases but rather an exponential scale-
up (usually an order of magnitude). Practically, this leads to the necessity of involving more than
ten compute providers to distribute the workload sufficiently to circumvent the threshold. This
requirement imposes substantial logistical and performance challenges. Simply identifying more
than ten compute providers with sufficient compute capacity over which to structure a workload is
a formidable challenge, and doing so without detection is even more difficult. Furthermore, next-
generation models—given the exponential increase in training compute—increase the challenges
even further. Should the exponential scaling of training compute persist, it would necessitate a
proportionally exponential increase in the number of compute providers involved, exacerbating the
challenges even further.

Using privacy-preserving technologies for detailed workload verification.
Emerging privacy and verification mechanisms such as trusted execution environments and proof-
of-training may allow multiple parties to cooperate without the risk of exposing confidential or
sensitive information to each other. For example, a compute provider, data provider, and software
provider could cooperate in a mutually beneficial training run without needing to share trade secrets

37A customer might attempt to hide the fact that they are engaging in AI training by using non-standard
number representations, affecting traffic to/from outside networks, or deliberately using less efficient algorithms
with different workload characteristics, such as under-utilizing memory or computation. However, the more a
customer attempts to disguise workloads in this fashion, the greater the cost in terms of lost efficiency. In the
context of frontier model training, where a single workload can cost tens of millions of dollars, perhaps these
losses could be significant enough to make many forms of obfuscation too costly.

38In the event of adversarial actors attempting to obscure their activities, it should be noted that such gaming
of the system typically comes at a cost, potentially affecting the efficiency or performance of the AI system
being trained. Compute providers and regulators will need to consider whether the penalties for non-compliance
are substantial enough to deter such behavior, weighing if the cost of circumventing outweighs the cost of
compliance.

39Scaling laws suggest that achieving substantial enhancements in performance on downstream tasks neces-
sitates exponential increases in training compute. This principle underscores that compute investments grow
exponentially for comparatively linear improvements in task performance (Owen, 2024).
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or personally identifiable information, producing a tamper-evident and privacy-preserving training
record that can be later scrutinized by a verifier. More work is needed in this area to develop robust
hardware mechanisms and algorithmic techniques that can provably account for and verify aspects of
compute usage. Any methods of de-identifying personal or confidential data for such exercises must
be robust enough to meet the standards imposed by key privacy laws, such as the EU GDPR, to avoid
personal data breaches or privacy conflicts.

Creating a robust customer identification scheme.
Work must be done to robustly link cloud accounts to particular individuals and entities. This is
needed for key functions like liability tracing, developer licensing, export control enforcement, and
defending against “structured” training runs where an adversarial actor distributes its workload across
multiple compute providers. Furthermore, advances in AI may continue to increase the challenge of
verifying customers’ identities. For example, websites are already claiming to use neural networks
to generate photos of highly plausible fake IDs, (Cox, 2024) which could potentially be applied to
generate fake business documentation.40 This issue is not unique to compute provider oversight
and would need to be addressed on a broader scale to investigate how AI could help facilitate fraud,
money laundering, and other criminal activity.

However, as discussed in Section 1.4, customer identification within the context of frontier AI
predominantly involves a limited number of entities, primarily large-scale corporations. Rather than
necessitating widespread identification efforts, our focus is on conducting thorough verifications for
this select group, ensuring that these in-depth analyses are both effective and targeted.

Challenges from technological developments.
The utility of compute providers as intermediary regulators is supported by the need for significant
computational resources for the training and deployment of frontier AI models (Sastry et al., 2024).
While current compute and AI trends appear to reinforce the primacy of large-scale compute for such
models, a variety of technical developments may challenge this norm (Heim, 2024; Pilz et al., 2024;
Sastry et al., 2024). It will be important to ensure that compute governance policy is complemented
by research into other effective mechanisms for AI governance.

5.2 Governance Challenges

Maintaining equitable access.
Increasing regulatory requirements on both compute providers and customers can increase the
barriers to entry, preventing smaller, less well-resourced actors from entering the market. This risks
intensifying power concentration among hyperscalers. Key challenges include making legislation
legible, ensuring that secure implementation methods are accessible, and striking a balance between
safety and regulatory burdens at various threat levels. For example, the technical tools needed for
compute verification should be accessible to potential providers. Regulatory agencies, such as NIST,
can play a role in determining standards and facilitating open-source solutions.

Strengthening regulatory structures for in-house compute.
Many AI developers currently operate their own data centers for training and deploying AI systems.
This provides additional challenges for oversight. Since the AI developer and the compute provider
are essentially the same entity, they may be incentivized to collude, weakening the verification and
enforcement capabilities provided by an independent compute provider. In such cases, prudential
regulations, whistleblower schemes, or even direct inspections by the regulator may be necessary to
ensure adequate supervision. Experience may be drawn from the financial world, where regulators
face a similar challenge with corporations running their own banks (Consumer Financial Protection
Bureau, 2023). More work should be done on developing both regulatory and technical tools that
enable robust and low-cost oversight in these situations.41

Ensuring compliance with privacy commitments and related laws on privacy and data transfer.
Although we discussed privacy-preserving methods to perform compute accounting and workload
classification, it is critical that any implementation of an infrastructure governance scheme is in

40The complexity of verification processes is further increased by the diversity of national ID and business
registration regulations when considered in an international context (e.g., India has more advanced ID verification
systems than other countries (India’s Ministry of Electronics and Information Technology, 2023)).

41E.g., zero-knowledge proofs that regulators can trust to verify compute usage without having direct access
to data centers or sensitive data.
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compliance with existing privacy laws and commitments (e.g., that personal data is not processed for
purposes beyond that for which there exists a solid legal basis). There may also be issues surrounding
international application for foreign privacy law. For example, if US providers are required to collect
information on customers in the EU, the US government is likely to face similar challenges from
EU institutions, member states, civil society, and US companies who have long dealt with EU-US
data transfer legal uncertainties caused by US national security data collection and Schrems legal
challenges regarding such collection for the past decade. In the long-term, there also needs to be a
conversation about how to balance privacy commitments with public safety, differentiating between
AI systems with varying risk levels.

Preventing regulatory flight across borders.
We have outlined international harmonization as a key step to minimize the risk of compute providers
and AI developers and deployers relocating their businesses or simply moving their workloads to
jurisdictions with lower regulatory standards. However, further work is needed to explore the most
effective mechanisms for supporting broad buy-in to a coordinated regulatory scheme, as well as
effective approaches for incentivizing businesses to remain in higher-regulatory environments. This
work would be aided by analysis on the elasticity of the global compute and AI markets, and the
extent to which businesses will attempt to avoid oversight measures.

6 Conclusion

As governments move to take action on addressing AI risks, compute providers can play a key role in
ensuring regulations are upheld and enforced. Their concentrated role in the AI supply chain allows
them to use record keeping, verification and enforcement capabilities to help secure sensitive AI-
related IP and data, engage in greater oversight of emerging AI risks, provide post-incident attribution
and forensics, prevent bad actors from training frontier AI models, and ensure AI developers adhere
to set standards. In this way, they have the ability to act as securers, record keepers, verifiers, and
enforcers.

Implementing this regulatory model in a way that preserves privacy and enables innovation will be
key. Our analysis indicates that selected mechanisms of these governance capabilities are technically
feasible and possible to implement in a privacy-preserving way. However, further work is required to
ensure such a governance model remains resilient to evasion efforts, and to further refine particular
technical mechanisms and standards that preserve privacy and innovation while allowing sufficient
oversight. Greater oversight would also be required of the compute providers themselves. This will
require close collaboration between compute providers, governments, and the research community.

When scaled internationally, this governance model has the potential to support global AI governance
architecture. International coordination will be essential for addressing cross-border oversight and
data issues, as well as to reduce the risk of compute providers and AI developers relocating to lower
scrutiny jurisdictions.

Using compute providers as intermediary regulators will be most effective at addressing risks arising
from large-scale AI training and deployment, rather than all AI-related risks. Moreover, the viability
of compute as a governance node may be challenged by developments in hardware and software,
which could reduce the need for large-scale data center usage (Sastry et al., 2024; Pilz et al., 2024).
These proposals should therefore be complemented by other regulatory measures as required.

Compute providers can play a key role in a governance regime that protects privacy and innovation,
while ensuring sufficient oversight to mitigate critical AI-related risks. We urge policymakers,
regulators, compute providers, and the research community to work together on the next steps.
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A Overview of Compute Provider Technologies

AI computing infrastructure is typically provided through “data centers”, buildings designed to power,
house, and operate large amounts of computing hardware. AI data centers contain many “servers,”
computers optimized for AI computational workloads (we abstractly refer to servers as “nodes” in
Section 3).42 Each server contains a variable number of CPUs (general-purpose processors), AI
accelerators (specialized AI processors such as GPUs and TPUs), networking to allow these devices to
communicate, and shared data storage (Figure 13). A relatively large number of AI accelerators, and
the capacity for those devices to communicate at high speed, are the primary attributes differentiating
AI data centers from other kinds of data centers.

AI accelerators contain many “cores,” sub-processors that are optimized for simple, parallel compu-
tation. AI accelerators reach high throughput as measured by operations per unit time due to both
the number of cores and the capability of these cores to perform “vector processing”: simple math
operations on an entire array of numbers in a single step. Contemporary deep learning workloads are
efficiently implemented in software using matrix multiplication, and the vector processing hardware
is an efficient mechanism for computing these matrices. Different types of cores may exist within a
single AI accelerator, where each type is optimized for handling different types of instructions or
input data, such as graphics and video games, or mixed-precision operations beyond simple parallel
operations such as matrix multiplication.

The primary goal of a compute provider is to map customer requests for compute (in the form
of workloads or “machine instances”) to physical hardware resources efficiently: achieving high
utilization of the (expensive) hardware while maintaining security and high performance. To achieve
this, providers typically provide “virtualization.” This means dynamically creating virtual (rather
than physical) versions of the hardware within a server, each with their own operating system and
software, and isolated code and data. These virtual servers are often referred to as “instances,” and
are used to partition physical hardware resources (e.g., cores, storage) to be efficiently shared across
separate computational workloads and different customers. For the purposes of the kinds of workloads
considered in this paper (large-scale AI workloads run on dedicated single-tenant infrastructure),
sharing resources across workloads rather than customers is more relevant. Virtualization exists in
part to subdivide a provider’s physical hardware resources, but also as a mechanism to isolate the
provider from the customer. In cases where the tenant is the sole tenant of a server, two options
exist: the provider can manage the server in the form of a hypervisor layer to provide services
such as additional security, networking configuration, and software management through an API,
or the provider can provide a “bare metal” instance to the customer, in which case the customer is
responsible for all software. Even in the bare metal instance, the provider maintains control over their
network.

On the software side, customer code is often run in combination with or on top of a standardized set
of software packages such as frameworks and APIs provided by the infrastructure provider, set up
by default on each instance. Code for a particular workload (e.g., training a model) is orchestrated
by the CPU, which schedules tasks to run on AI accelerators. The main code executed on an AI
accelerator is “compute kernels,” small programs written to execute a specific computational task
on a core, typically involving operations on matrices. Compute kernels are often provided by AI

42Typically a node and a server are equivalent, but “server” refers to the physical hardware, while a “node” is
a unit of computational resources within the cluster’s infrastructure.
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Figure 13: A logical diagram of the software and hardware components and interactions in an AI
data center. A user provides their AI code and data, interacting with a software stack that differs
depending on provider infrastructure but inherently includes the hardware interactions depicted above.
A server can be partitioned into virtual instances, where each instance has a fraction of the physical
resources: CPU, GPU/TPU, networking, and storage.

accelerator firms (e.g., NVIDIA’s CUDA library) or generated by a compiler (e.g., Triton), with
support for customers writing their own custom kernel. AI accelerator firms also generally provide
performance monitoring and debugging tools, which measure various aspects of an AI accelerator’s
performance, such as which cores are active, whether the cores are running at full capacity, and the
amount of data being transmitted to/from the AI accelerator’s memory. Typically these tools rely on
hardware-based “performance counters,” which track different metrics on the AI accelerator.

The infrastructure provider runs management and scheduling software, which accepts customer
requests and issues new instances to the customer, and allocates available hardware resources to
workloads based on their computational requirements. In tandem, another software system monitors
and maintains the cluster, tracking machine health (power consumption, temperature, network status,
etc), and yet other software. This management software allows infrastructure providers to track which
resources are being used by which customers, and bill customers for the resources they are using.

B Observable Data Attributes
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Table 4: An overview of observable data attributes.

Visible
attribute Uses

Involves
collection of data

not already
widely collected?

Ease of
implementation

Ease of cir-
cumvention

Hardware
configuration
requested by
the customer

Workload classification.

The quantity of AI
accelerators requested and

networking setup are strongly
suggestive of the workloads a

customer intends to run.

No, already
collected.

Already collected by
compute providers to
set up and provision

infrastructure.

Highly
difficult or
impossible.

Number of
hours that

resources (e.g.,
AI accelerators)

are in use

Workload classification,
compute accounting.

Allows high-level boundary
setting on workload type/size.

No, already
collected.

Already collected by
compute providers

for billing purposes.

Highly
difficult or
impossible.

Power draw

Workload classification,
compute accounting.

Allows high-level boundary
setting on workload type/size,

as increased power draw
corresponds to increased

throughput for a particular
device. Power consumption

over time may allow
differentiation of inference
from training (Patel et al.,

2023).

No, already
collected.

Possible to collect
using existing

tooling. Already
collected by some
compute providers.

Possible, but
would
involve

substantial
cost

efficiency
penalties.

Network
bandwidth
between AI
accelerator

servers

Workload classification,
compute accounting.

Large AI training workloads
require high bandwidth

between servers. Different
communication patterns

correspond to different kinds
of workloads, and bandwidth

utilization is related to the
quantity of computation

performed on each server.

No, already
collected.

Possible to collect
using existing

tooling. Already
collected by some
compute providers.

Possible, but
could

involve
substantial

cost
efficiency
penalties.

Network
bandwidth
within AI
accelerator

servers

Workload classification,
compute accounting.

Different bandwidth patterns
correspond to different kinds
of workloads, and bandwidth

utilization is related to the
quantity of computation

performed within each server.

No, already
collected.

Possible to collect
using existing

tooling. Already
collected by some
compute providers.

Possible, but
could

involve
substantial

cost
efficiency
penalties.

Continued on next page.
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Table 4 – Continued from previous page.

Visible
attribute Uses

Involves
collection of data

not already
widely collected?

Ease of
implementation

Ease of cir-
cumvention

AI accelerator
core & memory

bandwidth
utilization

Workload classification,
compute accounting.

Large AI workloads typically
have high memory bandwidth

utilization, and core
utilization will tend to be

constant for training, while
inference is typically variable.

No, already
collected.

Possible to collect
using existing

tooling. Difficult to
collect for

bare-metal services.

Possible, but
could

involve
substantial

cost
efficiency
penalties.

Performance
counters by
numerical
precision

Workload classification,
compute accounting.

Lower precision is common
in AI workloads and allows
differentiation from most

scientific computing
workloads and possibly
gaming. Counters also

provide a direct measurement
of operations consumed by a

workload.

Potentially. This
degree of

telemetry on an
individual

customer is
unusual. Policies
for collection and

analysis would
need to be clearly

outlined in
provider’s terms of

service.

Possible to collect
using existing

tooling. Difficult to
collect for bare metal

services.

Possible, but
could

involve
moderate

cost
efficiency
penalties.

Modification of
weights in
memory

Workload classification,
compute accounting.

Model training requires
changing the weights in

memory using a backward
pass. Typically the only large
data structures in memory are
the weights and activations,
so it should be possible to
observe whether stores are

made to that region of
memory. The magnitude and
frequency of memory updates
are related to the quantity of

compute consumed.

Potentially Not currently
possible.

Difficult:
training
requires

modifying
weights in
memory to
be highly

performant.

Workload hy-
perparameters

Workload classification,
compute accounting, detailed

workload verification.

Yes. Can
potentially be

made
privacy-preserving
using confidential

computing
techniques.

Possible to collect
with customer

consent.

Unclear
(highly

dependent
on imple-

mentation).

Continued on next page.
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Table 4 – Continued from previous page.

Visible
attribute Uses

Involves
collection of data

not already
widely collected?

Ease of
implementation

Ease of cir-
cumvention

Training
dataset

Workload classification,
compute accounting, detailed

workload verification.

Yes. Can
potentially be

made
privacy-preserving
using confidential

computing
techniques.

Possible to collect
with customer

consent.

Unclear
(highly

dependent
on imple-

mentation).
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