Open Problems in Technical AI Governance

20 September 2024

Anka Reuel, Ben Bucknall, Stephen Casper, Tim Fist, Lisa Soder, Onni Aarne, Lewis Hammond, Lujain Ibrahim, Alan Chan, Peter Wills, Markus Anderljung, Ben Garfinkel, Lennart Heim, Andrew Trask, Gabriel Mukobi, Rylan Schaeffer, Mauricio Baker, Sara Hooker, Irene Solaiman, Alexandra Sasha Luccioni, Nitarshan Rajkumar, Nicolas Moës, Neel Guha, Jessica Newman, Yoshua Bengio, Tobin South, Alex Pentland, Jeffrey Ladish, Sanmi Koyejo, Mykel J. Kochenderfer, Robert Trager Please cite as: 'Reuel, A., Bucknall, B., et al. (2024)'

View Journal Article / Working Paper

AI progress is creating a growing range of risks and opportunities, but it is often unclear how they should be navigated. In many cases, the barriers and uncertainties faced are at least partly technical. Technical AI governance, referring to technical analysis and tools for supporting the effective governance of AI, seeks to address such challenges. It can help to (a) identify areas where intervention is needed, (b) identify and assess the efficacy of potential governance actions, and (c) enhance governance options by designing mechanisms for enforcement, incentivisation, or compliance.

In this paper, we explain what technical AI governance is, why it is important, and present a taxonomy and incomplete catalogue of its open problems. This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.