The Oxford Martin Programme on

Bio-Inspired Quantum Technologies

This research programme ran from 2012 - 2019 and the following page is an archived resource.

the Challenge

The Oxford Martin Programme on Bio-Inspired Quantum Technologies is investigating the possibility of making quantum computers real.

We aim to develop a completely new methodology for overcoming the extreme fragility of quantum memory. By learning how biological molecules shield fragile quantum states from the environment, we hope to create the building blocks of future quantum computers.

The unique power of quantum computers comes from their ability to carry out all possible calculations in parallel.

Such a computer would process information faster than classical computers, but more importantly, it would be capable of modelling systems, such as climate models or physiological function, which are too challenging for today’s supercomputers, and would also be energy-efficient. Some of the quantum machine designs we are studying would use light to transmit and store information, instead of traditional electrical currents.

Most current approaches build quantum memory by adding quantum bits, one by one, from the bottom up. Our radical new approach offers a top-down perspective from biology, whereby we learn from nature how large complex systems such as biomolecules achieve quantum coherence before we replicate their properties in sub-units.


Searching for Quantum Coherence

Experimental objectives include searching for quantum coherence in biomolecules (such as proteins) using multidimensional spectroscopy, then designing and fabricating biomimetic hybrid systems comprising artificial and biological parts.

The project also aims aim to measure spin coherence in molecules responsible for magneto-reception. This quantum effect is thought to guide birds during migration, and now that the molecules responsible for magneto-reception discovered in Drosophila flies, the field has been opened up to experiments impossible to carry out using birds.

Building blocks for future quantum computers

We aim to learn and copy how large biological systems shield quantum coherence, which will allow us to derive the design principles for the building blocks of future quantum technologies such as quantum computers. We will focus on two kinds of systems. The first is biological molecules (e.g. protein complexes), and the second is biomimetic systems (that is, systems that copy the architecture or function of biological systems).

We have pooled our laboratory resources and expertise to leverage Oxford's resources and expertise and to cut out duplication.

Biomimetics – simulating living systems

Biological systems are incredibly complex and there is much to learn from testing basic predictions in simpler artificial systems that capture and simulate the essential features of biomolecules. One objective is to replicate highly efficient energy transport in networked structures inspired by the light harvesting protein found in photosynthetic organisms.

This would be a major advance towards building and fabricating more sophisticated quantum wire networks with direct applications for efficient quantum information circuits or energy harvesting.